Spring 2011	House Rules	Final Documentation

Team House Rules
Final Documentation

Tom Enzweiler
Adam Mahood
Christina Powers
Paul Scanlon

Electrical Engineering Senior Design
University of Notre Dame
Spring 2011

Table of Contents

Introduction…………………………………………………………………………… 3
Project Motivation / Overview…………………………………………………. 3
Detailed Problem Statement……………………………………………………. 3
Initial Goals of the Team……………………………………………………….. 4
Initial Requirements Definition……………………………………………….... 5
1.5 Major Roadblocks / Requirements Evolution…………………………….... 8
Detailed Project Description………………………………………………………..... 9
2.1 Concept of Operations……………………………………………….…...…..... 9
2.2 System Block Diagram and Subsystem Overviews……………………………. 9
2.3 Detailed Operation of Player Interface Unit (PIU) Subsystem……………….. 11
2.4 Detailed Operation of Embedded Intelligence Subsystem……………………. 17
2.5 Detailed Operation of X-Y Mechanics Subsystem……………………………. 24
2.6 Detailed Operation of Motor and Driver Subsystem………………………….. 28
2.7 Detailed Operation of Magnetic Latching Subsystem………………………… 33
2.8 Limit Switch Sensors………………………………………………………….. 35
2.9 Cellular Phone Android Application………………………………………….. 36
3. Systems Integration…………………………………………………………………… 37
4. User Manual………………………………………………………………………….... 38
4.1 Product Installation……………………………………………………………. 38
4.2 Product Initialization…………………………………………………………... 38
4.3 Proper Operation………………………………………………………………. 39
4.4 Troubleshooting……………………………………………………………….. 39
5. Future Design Changes………………………………………………………………... 41
5.1 Hardware Changes……………………………………………………………... 41
5.2 Software Changes……………………………………………………………… 42
6. Conclusions……………………………………………………………………………... 43
7. Appendices……………………………………………………………………………… 44
Appendix A – Complete PIU Software Listing……………………………………. 44
Appendix B – Complete Embedded Intelligence Code Listing……………………. 55
Appendix C – Arduino Deumilanove Schematic…………………………………... 61
Appendix D – EasyDriver Stepper Driver Schematic……………………………… 62
Appendix E – Bill of Materials…………………………………………………….. 63

Introduction
 Project Motivation / Overview
When faced with the problem of what to do for a challenging and innovative, yet enjoyable and fun, senior design project, we looked at our lives here at Notre Dame to see what problems we encounter on a regular basis that could remedied or at least improved in part by the expertise that we have gained through our Electrical Engineering curriculum.

For many students here at Notre Dame, a common weekend activity is the game of beverage pong. One main problem with this game, as it is currently played (especially as the night progresses), is the lack of standardization in cup set-up and game play. Thus, we chose to utilize our expertise to tackle some of the issues presented in the game of beverage pong.

We realized at the outset that we could implement some sort of electro-mechanical system that would take a lot of the human error out of game set-up and game play in a way that would positively augment the player's experience. Thus, we set out to take everything out of the players' hands except for the shooting and consuming (what people are really there for). This required us to tackle robotic motion in two axes, software user interfaces, and a variety of other challenges both within and outside of our Electrical Engineering curriculum.

Throughout this project, we had to push ourselves beyond the boundaries of "Electrical Engineering" proper and delve into mechanical and robotic issues, as well as challenge ourselves electrically. This forced us to be flexible, engaged, and willing to learn. We encountered multiple problems along the way, including hardware scarcity, lack of parts knowledge, budget constraints, and personal limitations. In the end, however, we have been able to overcome hurdles that have been thrown our way and produce a fully functional half-table game of beverage pong that meets as well as surpasses our goals and requirements at the outset of this project.

 Detailed Problem Statement
As stated above, there are several major problems with a game of beverage pong that is manually controlled, meaning it is set up and managed by hand by the players. This section will define in detail these problems and what we initially sought to implement to improve each of these aspects of game play.

Cup Alignment – When the traditional game of beverage pong is played, the user manually takes each cup and places it in one of the ten spots in the original pyramidal rack, the same way that bowling pins are aligned. The problem with this is that the cups that are traditionally used are very hard to get in a perfect pyramid with no overlaps and no tilted cups. Thus, we thought we could automate this process. We originally thought that we could implement a system in which at the beginning of the game, the user would still place a cup (custom cup/coaster combo specific to our system) in one of the designated areas on our table. However, because we are using a magnetic latching system, when the initial latch test is run, the magnets are powerful enough that they snap the cups into the appropriate place in the ten-cup pyramidal rack. We believe this will eliminate the alignment problem brought about by human placement of the cups.

Off-Playfield Movement and Organization – One of the things that negatively impacts game play experience during a round of beverage pong is having to move the cups once they have been hit and consumed. Most players do not like to stack made cups due to germ concern and, as a result, cup organization off of the active playfield becomes cluttered and confusing. Having a robotic two-axis movement system under the main playfield to take care of cup movements of made cups will be very important because it will take cup organization and movement out of the players hands.

These were the two main problems with manual beverage pong that we were aiming to overcome. These problems and our implementation solutions will be defined below.

 Initial Goals of the Team
It became clear very quickly at the outset that this set of problems would require a very sophisticated solution set. Not only would it require a very precise and robust mechanical system, but it would also necessitate a very complex and sophisticated software package that included both PC based software as well as microprocessor firmware.

Mechanically speaking, we originally wanted to create a two dimensional movement system that was configurable and controllable via some sort of software solution. We had initially planned to create this system on both ends of the pong playfield so that it would be fully mechanized game. It will be discussed shortly how these goals changed.

Another key component that we wanted to design was some sort of magnetic latching system that would be used to attach to and move cups. We wanted all of these mechanical “guts” to be hidden inside the table, so we needed magnetic latching between the mechanics below the play surface and the cups above this surface. In order to be able to use standard Solo brand plastic cups and not need to include permanent cups with the game, we knew we would have to design custom coasters with embedded magnets that would be able to accept standard party cups.

Lastly, we reach the software goals. We wanted to have some sort of interface system so that the player can control the flow of the game and be able to instruct the mechanics to perform specific movements when certain game sequences have been achieved. We realized that this would require a division of labor between a GUI implemented on a PC and a microprocessor running specific firmware.

 Initial Requirements Definition
1.4.1 – Player Interface Unit
1.4.1.1 – Overall Subsystem Objective
The main objective of this unit is to be the primary center of interaction with the beverage pong players. This unit will be used to display current game information as well as accept user inputs and react accordingly.
1.4.1.2 – Subsystem Requirements
This subsystem:
Shall have a display to present game information to users in an attractive manner
Shall have the ability to run game management software created by the group
This software:
Shall be able to keep track of current cups in play and their positions
Shall be able to accept user inputs with regards to cups made and send movement commands accordingly
Shall be able to present re-rack options from the user, accept a choice, and send commands appropriately
Shall have the ability to accept user inputs
1.4.1.3 –Implementation Solution
A dedicated external laptop that will run the game management software
Inputs will be given using a mouse or trackpad
Commands will be sent using RS232 over a USB port modeled as a Virtual COM Port (VCP)

1.4.2– Embedded Intelligence
1.4.2.1 – Overall Subsystem Objective
The main objective of this unit is to be an intermediary between the primary interface unit and the motors/controllers. This unit’s responsibility is to perform some low-level data processing that will enable a beneficial division of software labor between different subsystems of the table.
– Subsystem Requirements
This subsystem:
Shall be able to accept encoded commands from the player interface unit
Shall be able to parse inputs and send appropriate movement commands to the motor and magnetic latching controllers
Shall be able to perform its necessary functions without reference to the current game situation/layout (should be a blind operator)
1.4.2.3 –Implementation Solution
Our primary implementation idea is to have two parallel Arduino development boards

1.4.2.4 – Major Subsystem Design Decisions
One of the major problems with regards to cup movement was the fact that due to the relative cup positions in various setups, straight horizontal or vertical movement may not be possible without knocking over other cups. This eliminates the possibility of our system moving cups by moving the necessary amount in the x-direction and then moving the necessary amount in the y-direction. Thus, simultaneous motor movement must occur. To do this we need a way of synchronizing motor commands to allow simultaneous movement.

1.4.3 – Motors and Drivers
1.4.3.1 – Overall Subsystem Objective
The overall objective of this system is to power the movement of the X and Y mechanism. The system can move the carriage to any position within the 40x24 inch playing field. Additionally, the control should be able to move the carriage in any possible direction to trace out any and all shapes and curves.
1.4.3.2 – Subsystem Requirements
The subsystem:
Shall be able to power the carriage at least 3 feet per second
Shall control each axis independently and simultaneously
Shall be able to precisely place the carriage within 5 mm of target location
Shall operate quietly below an acceptable noise level
Shall not allow carriage to exit the 40”x24” play field
–Implementation Solution
The implementation scenario this subsystem design is:
Stepper motor and stepper motor control boards - one mounted on the base plate driving y-axis motion by a chain coupled to the x-axis cross track

1.4.4 – Magnetic Engagement Device
1.4.4.1 – Overall Subsystem Objective
The overall objective of this system is to engage cups with an NdFeB magnet from beneath the table and through the playing surface. The system includes the magnetic coasters attached to each cup, the magnet beneath the table, and the motor controlling the engagement of the magnetic latching device. In addition to latching and unlatching at the appropriate points on the table, this subsystem must also maintain engagement while it moves a cup from point A to point B.
1.4.4.2 – Subsystem Requirements
The subsystem:
Shall engage and disengage the coasters at any position within the grid. This is going to require the device be wired to the control system
Shall precisely engage only one cup and maintain engagement throughout the cup movement routine
Shall have enough force to drag the coaster against friction forces
Shall have coasters which maintain their placement on the table once positioned
Shall fit comfortably on the carriage from the mechanical subsystem
Shall be less than 3”x3” and weigh under 0.5 kg to sit on the carriage
1.4.4.3 –Implementation Solution
We will use a servo motor to dictate the engagement and disengagement of the magnet. The servo motor provides circular motion over a span of 90 degrees. When the magnet is in the latched position, the servo will point the magnet in the vertical direction (90 degrees or 12 o’clock in clock orientation). However, when we want to unlatch the magnet, the servo will rotate the magnet into the horizontal direction (0 degrees or 3 o’clock in clock orientation).
1.4.4.4 – Major Subsystem Design Decisions
Two major design decisions remain for the magnetic latching subsystem. The first decision involves the coasters on which the cups will sit and the magnet below the surface will attach to. We plan to use metal plates on the bottom of each cup in order to avoid the cost of ordering a great number of NdFeB magnets. While this design has already been tested and will work, we still need to find the best way to attach these metal plates to each of the cups. In addition, we need to find the best configuration for fitting the servo motor and driver on top of the x-axis of the 2D system. The motor and driver must be situated such that they can move across the entire span of the x-axis and remain attached to the USB plug at the same time. This cannot be fully designed and implemented until the XY table is complete and physical space is more definitively defined.

1.4.5 – Two-Dimensional Movement
1.4.5.1 – Overall Subsystem Objective
The overall objective of this subsystem is to enable movement of a loaded carriage device in the 2-dimensional X-Y plane. This subsystem will enable the removal and replacement of cups to and from the active beverage pong playfield.
1.4.5.2 – Subsystem Requirements
This subsystem:
Shall reside 1 foot below the main playfield on a separate table surface and be adequately supported
Shall allow 40 inches of movement in the x-direction and 24 inches of movement in the y-direction
Shall contain a cart mechanism that can carry a load with dimensions up to 3 inches by 3 inches and weight up to 0.5 kg
Shall be able to interface with a driver/control subsystem to control movement
Shall be able to move a fully loaded cart 3 feet per second
Shall allow the implementation of a cable to the cart for electronic control purposes without interfering with the movement process
1.4.5.3 –Implementation Solution
Here is the implementation scenario for this subsystem design:
The x- and y-axis movement system will be implemented using parallel timing belts and pulleys
The x-axis will run on the y-axis with nylon rollers
The track will be T-slot extruded aluminum
The cart that travels on the x-axis will be able to move the full 40 inches
The timing belts will be clamped to the track so that the motors control the movement of the axes
1.4.5.4 – Major Subsystem Design Decisions
The design for the X-Y table is finalized and requires following the assembly instructions of a third party consultant.

1.5 Major Roadblocks / Requirements Evolution
As is evident from above, there were a lot of requirements to fulfill throughout the design and implementation phase of this project. However, there was only one major change that we had to allow. As we began to design and build, it became clear that budget constraints would not allow us to complete a functioning unit for both sides of the table. We spent a lot of money on quality precise mechanical parts for the first half and it would not have been feasible for us to replicate this high quality mechanical design on the other half of the playfield. This still allows both teams to play; however, one side must still be played in the traditional manual way.

With this in mind, it must be stated that our result definitely surpassed our expectations. We had very lofty goals that required us to have a steep learning curve mechanically. Being able to get one side of the table fully functional is in our mind a large success. “Completing” the product would be a matter of replicating the exact mechanical system that is in place on the initial side and buying the appropriate electronics. In fact, there are large portions of this project that are better than we had expected. For example, we had concerns about the accuracy and reliability of the stepper motors. These motors and their controllers were more than fast enough and maintained good precision throughout the life of the project. We deem the design, build, and test throughout the course of this project a large success.

2. Detailed Project Description
2.1 Concept of Operations
Let us begin describing the operation of the unit as a whole and describing placement of the table apparatus. The table was designed to be a relatively portable non-permanent device that could reside in a variety of venues. Thus the unit has no legs and must be placed on sawhorses or another supportive device that can prop the table up from below.

The table has two cables coming out of the automated end. One is a power cord that can be plugged into any 120V – 60Hz household outlet. Secondly, there is a USB cable. This cable can be plugged into a standard USB port on any PC running the table’s PIU software.

The way we designed it, the game operation is as described in the rest of this paragraph. After the USB is plugged into the target computer and the table is powered on, the user will initiate a new game by clicking the appropriate button on the screen. Also, the users will be required to initially place the cups on the locations specified on the top of the table. Normal beverage pong play would then proceed. If a team made a cup on the automated side, one of the players would click the cup on the map on-screen and the cup would be robotically removed from the table. This process would continue until all of one team’s cups are made.

2.2 System Block Diagram and Subsystem Overviews

Our automated beverage pong table is an elaborate system that consists of five major subsystems. The correct functionality of each of these subsystems is essential to the overall system. The following block diagram provides a visualization of the separate subsystems involved in the automated beverage pong table and the interaction of each block with the others.

 (
Player Interface Unit
Embedded Intelligence
Motors/Drivers
Magnetic Latching
X-Y Axis Mechanics
)

Subsystem 1: Player Interface Unit
The user will first interact with this subsystem when attempting to start a game. This subsystem will consist almost exclusively of software. We will implement this interface through a small, but sufficient, computer processor. Our program will offer the user a number of buttons in order to begin game play and interact with the program throughout the game. The display will contain a diagram of the field of play. The users will have the ability to click the desired cup when a cup is made and prompt the system to then move that cup over to the side of the table and out of the field of play. Therefore, this event must prompt some interface between this subsystem and the embedded intelligence block.

Subsystem 2: Embedded Intelligence
The automated beverage pong table will implement a microcontroller as the embedded intelligence. The microcontroller will receive commands from the user interface subsystem and relate those commands into mechanical actions for the magnetic latching and motors/drivers subsystems. In addition, the microcontroller will need to understand when the mechanical actions have been completed so that the players are notified that game play can resume and the user interface is updated when the game situation changes.

Subsystem 3: Motors/Drivers
This subsystem will control the mechanical movements of the motors and drivers that dictate the placement of the magnet below the table. It will receive its input signal from the microcontroller and then output the necessary signals to insure proper speed and direction of the motors. This movement of the motors will result in the precise placement of the magnetic latching device. It must also be able to relay its on/off status to the microcontroller.

Subsystem 4: Magnetic Engagement Device
This subsystem will receive its input commands from the microcontroller, which will tell it whether to latch. For instance, if a cup needs to be moved outside of the field of play, the magnet controller will wait until the motors have correctly placed the magnet at its proper position and then activate the latching power of the magnet. It must also be able to detach its magnetism and relay its magnetized/demagnetized status to the microcontroller.

Subsystem 5: 2-D Movement Subsystem
This subsystem consists of the mechanical parts necessary to insure that the magnetic latching device settles at its intended location. It consists of no intelligent parts; the motors/drivers subsystem controls the actions of this subsystem. The exact mechanical pieces included in the X-Y axis will be described later in this document.

2.3 Detailed Operation of Player Interface Unit (PIU) Subsystem
2.3.1 – General Software Needs
The need for the automated beverage pong table to have precise and user-interactive software arises from a two-fold demand. First off, it was decided fairly early in the design phase of the project that “made-cup” sensing technology would not be incorporated into our solution. This was primarily due to the fact that the hardware and game-piece specialization necessary to accomplish this task was much more difficult than our time and money constraints allowed. Thus, a different solution to game tracking was necessary. The team decided that the best way to do this was by incorporating an external intelligence device that allowed the users to interact with the game and manually keep track of cups made. This external hardware/software solution is now referred to as the Player Interface Unit (PIU).

The second prong of the demand for significant investment in software development was the need to create a communication and translation link between the PIU and the stepper motors and their drivers. The solution developed to tackle this demand was on-board microprocessor firmware running on Arduino Deumilanove development boards. This hardware/software combination would handle the decoding of the movement commands sent from the PIU as well as the distribution of motor commands to the motors of the different axes.

2.3.2 – Engineering Decisions
The first thing we had to decide on this front was in what language we were going to write the PIU graphical application. We decided on a C# application that was supported by Windows Presentation Foundation (WPF) and the .NET framework in Windows so that we would have easy access to built in Windows functionality. This was chosen over C++ due to the ease with which WPF allows you to create and manipulate GUI elements in the designer. Also having a managed code base like the .NET framework would allow us access to pre-packaged Windows APIs like serial communication and networking protocols. Obviously, this decision made it mandatory that the system that was running the PIU had to be a Windows PC environment.

Secondly, it was decided that we would use a team member’s laptop as the primary repository and host for the software development and deployment. It was deemed cost ineffective to purchase or procure a small netbook type computer for the sole purpose of implementing with the table.

A lot of the other decisions that were made throughout the course of software development were out of necessity or they were the only logical implementation choice. For example, we were obviously going to use serial communication output form the PIU because it has the most prepackaged APIS in Windows and there are a lot of microprocessor devices that have built in serial functionality. Also, the layouts had to be designed in XML because this is the only design format that is recognizable and compatible with C# applications based in WPF.

2.3.3 – Division of Labor
The software was divided into two portions. Because of the processing requirements, it was decided to develop most of the software and carry out most of the operations on the PIU, an external computer. This PIU software is written in C# and is packaged into a graphical-based application that will run on any Windows machine. This C# program running on the PIU performs the following tasks:
Display to the user the current cup arrangement
Allow the user to indicate a made cup
Create instruction set objects that have X and Y coordinate waypoints and magnetic latching information
Pass correctly formatted commands and instruction sets to embedded intelligence via a Virtual COM Port USB interface

2.3.4 – Class Interaction Flowchart
One other advantage of creating the PIU application in C# was that the creation of classes to further compartmentalize and abstract away various implementation details was a lot easier than in traditional lower level object oriented programming languages like C++. This concept of abstraction was used to help create different classes to take care of information management and command and control within the PIU. Below is a class interaction flowchart that shows how the various classes in the PIU application interact and gives a brief insight into what the different classes accomplish.
 (
MainWindow
Controls the UI and responds to the user
TenRack
UI element for the pyramidal initial rack
GameState
Bridges the gap between UI and communication elements
COMController
Takes care of communication to Arduino
Map
Houses waypoint information for movement sequences
To Table
)

2.3.5 – Protocol Design
As the software designs on both the PIU and embedded device continued to evolve, we realized that really the only efficient way of communicating between the two devices was to establish and create our own custom communication protocol that would govern the messages and data sent between the two software subsystems. The main point of the protocol is to establish message commands that will let the embedded intelligence know what type of data is coming in the next few bytes. Since we are only using half-inch resolution for our playfield, that frees up the numbers between roughly 100 and 255 in each byte to be used as command an control data. Thus, we decided to utilize the higher end numbers so signify message types and flow control. Below in Table 1 is a list of the message types, their identifier, and what type of data follows behind the command byte.

Table 1. Custom Protocol Message Types
	Message Type
	Byte Identifier
	Data / Message

	Send unlatched coordinate pair
	255
	x-location byte then y-location byte

	Send latched coordinate pair
	254
	x-location byte then y-location byte

	Go to origin command
	253
	N/A

	Engage magnet
	252
	N/A

	Disengage Magnet
	251
	N/A

	X Receive Confirmation
	250
	N/A

	Y Receive Confirmation
	249
	N/A

	X Move Confirmation
	248
	N/A

	Y Move Confirmation
	247
	N/A

The protocol outlined in the table above was the sole avenue of flow control that was utilized in the communication between the PIU and embedded intelligence.

2.3.6 – Detailed Class Descriptions
2.3.6.1 – MainWindow.xaml / MainWindow.xaml.cs
This set of files makes up the visuals and functions of the Graphical User Interface (GUI) that the user sees. The file extension .xaml stands for Extensible Application Markup Language and is a markup style way of creating GUI elements. The .xaml.cs file is what forms the backend information management for the .xaml GUI. In this case, the .xaml file has four main elements – a new game button, re-rack options, an end game button, and a map showing current cup arrangement. When a user clicks the new game button, the map returns to a full ten-cup rack and a new sequence can begin. The end game button closes the program, and the re-rack settings enable the user to change the cup arrangement after they have hit at least four cups. The most important aspect of this GUI in terms of information management lies in its standalone ability that allows it to only focus on graphical elements and, with simple signals, initiate the real data flow in ancillary classes. This process is started by the MainWindow instantiating an instance of the GameState object, which will be discussed next section. The GUI is shown in Figure 1.
[image:]

Figure 1. Graphical User Interface (GUI)

– GameState.cs
Purpose: Provide the initial information flow link between the GUI and business logic communicating with the table.
Data Members:
String mapType – Keeps track of the current cup map of the table
Int[] cupStatus – Array of integers that keeps track of the status of each cup (1 for still in play, 0 for out of play)
COMcontroller comChannel – New COMcontroller object that enables communication with the table via virtual serial port
Methods:
Void changeMap(string mapIn) – Changes mapType based when called to signify a new rack is in play
Bool SendMoveCommand(int posMade) – Changes cupStatus array and calls comChannel method to initiate cup movement
– COMcontroller.cs
Purpose: Act as the primary interface between the PIU and the table mechanics via the COM port. Opens a communication channel on port “COM 3” on the Windows machine.
Data Members:
SerialPort COMport – Instance of the .NET SerialPort class that opens a 	COM port for communication to the Embedded Intelligence
Map CupMap – Instance of our Map class that is referenced to get
Necessary cup movement instructions
Instruction NewInst – Instance of our Instruction class that is used as astorage location for the movement instructions
int PositionToMove – Variable that is updated based on what cup is passed by the GameState instance
String CurrentMap – String variable to hold the current rack setup in order to properly reference the map
Methods:
Void SetPosToMove(int position, string inmap) – Function called by GameState instance when a cup is hit that references the Map class,gets the necessary movement instructions, and sends them out theCOM port.
Void SendCommands() – Sends each the instructions out of the COM port by parsing the Instruction object and using SerialPort commands and the custom protocol commands
– Map.cs
Purpose : To provide a database that, when referenced, will provide the
	arrays of necessary waypoints for movement in both the X and Y
	directions.
Data Members :
Instruction TempInst – Instance of our Instruction class that holds the
information necessary to move the cup that is referenced
Methods:
Instruction GetInstructions(int CupPos, string MapType) – The only
method in the class, one that is called by the COMcontroller with a
specific cup position and map type in order to receive an Instruction
object with the necessary movement instructions to pass out the COM port
– Instruction.cs
Purpose: Provide a standard object that will be used to pass movement
	information between the Map class instances and the COMcontroller
	instances.
Data Members:
int[] Xwaypoints – Array of integers that is set to the necessary
waypoints in the X direction for movement
int[] Ywaypoints - Array of integers that is set to the necessary
waypoints in the Y direction for movement

2.3.7 – Example Cup Movement Flow Through Software
It will be helpful to show here how execution flows when the user clicks a cup. Below is how the code performs when the user initiates a movement sequence.
 (
User clicks cup on GUI
MainWindow hides that cup from the UI
GameState SendMove Command is called to initiate movement
COMController references map to get waypoint arrays
COMController begins sending data to Arduino to carry out movement
PIU sends “255” and first point
Arduino sends “250” as confirmation
Arduino sends “248” and “247” as confirmation it has moved
PIU sends “252” to engage magnet
PIU sends “251” to release magnet
While there are waypoints left to send
PIU sends “254” and first point
Arduino sends “250” as confirmation
Arduino sends “248” and “247” as confirmation it has moved
)

2.3.8 – Subsystem Testing
Since the PIU software has very specific functionality, testing for performance was fairly easy. Because all of the information that the PIU sends is either a message type byte or a position byte, as long as we had a way of seeing what was coming out the pipeline, we could verify its functionality. In order to do this, we made it so that everything the PIU sends out of the VCP is visible in Visual Studio’s Debugger Console. Everything that was getting sent to the Arduino was being echoed for us to see as well. After execution, these listings remained, so we could scroll back through them as necessary to check out what issues existed during execution.

We essentially went through every function that the PIU had to perform and checked the echoed pipeline data for accuracy. Once the embedded software was done, testing became even easier because we could physically tell if the commands that were being sent from the PIU were being executed correctly.

2.3.9 – Complete Code Listing
See Appendix A for complete commented code listing for PIU software including all subclasses.

2.4 Detailed Operation of Embedded Intelligence Subsystem
2.4.1 – General Firmware Needs
As mentioned above, this firmware is the main brains behind the movement control system that is physically inside the table. We needed embedded intelligence firmware that would reside on the Arduino in the electronics suite of the table. This firmware would have to be capable of communicating via serial communication over USB, sending digital information, and providing sources of 5V to other table systems, as these were the main functionalities that were required.

2.4.2 – Engineering Decisions
Much consideration was put into what type of intelligence we would use. The one option was to design our own circuit board and get it fabricated. However, we do not have a lot of expertise designing boards and we agreed that our time would be better spent on other engineering issues. Thus, we decided to go with a purchased Arduino Deumilanove development board. This unit is a small development board that has a USART for serial communication, the capability to receive and send digital pulses to other digital devices or signal lines, and various supplies for 3.3V, 5V and GND that we could use to source other devices. It was agreed upon by all parties that the capabilities of this unit were high enough that it would be a great choice for our embedded intelligence needs. More specifications of the Arduino are included in a later section.

2.4.3 – Division of Labor
Because of the specialized interface board the team will use between the Arduino and stepper motors, the stepper motor control software will be implemented on the Arduino development board. This software will be written in a proprietary variant of C whose documentation can be seen on arduino.cc. This on-board firmware will perform the following tasks:
Receive instructions from the PIU via USB Interface
Send necessary digital pulses to control stepper motors
Send necessary feedback back to the PIU

2.4.4 – Arduino and Arduino IDE Specifications / Functionality
The Arduino Duemilanove development board is the most important piece in this subsystem, so it is worth delving a little deeper into the electrical characteristics of the unit.

At the core of this Arduino unit is the Atmel ATmega328 running at 16MHz. Having this processor at the core of the board provided us with enough processing capability in an easy to use prepackaged manner. The speed of this Atmel part was adequate enough to allow us to provide the digital pulses necessary to control the motors at the appropriate speed. Using this processor gave us an allowable size of ~32KB for our on-board firmware. The fully implemented firmware ended up being only ~5KB so we never were up against program size constraints. This microprocessor (and the whole unit) is powered off of 5V regulated from the USB port. The board must be plugged into the PIU’s USB port at all times to remain powered. This ATmega is then connected to 14 general-purpose digital I/O pins, which were used by various other components in the table (see section 2.4.6 for listing). Each digital pin could source up to 40mA of current and be set to either input or output. Since we were not using the Arduino to control any sources that needed high current, the 40mA limitation was plenty.

The other main functionality of the Arduino that we used was the ability to communicate with another device over Serial communication through the USB port. In order to accomplish this, the Arduino has an on-board FTDI FT232RL USART that takes care of packaging data into RS232 TTL level standard package formatting and then wrapping it for USB communication. It must be noted that in order to correctly upload firmware from the Arduino IDE to the board, the PC must have the FTDI Serial-to-USB drivers installed on it.

The Arduino also has several other capabilities that we did not use. Some of these include access to the ATmega’s on-board EEPROM memory, pulse width modulation capabilities, analog inputs that feed into an analog-to-digital converter, two pins set up for interrupts, an I2C interface and an SPI interface. These boards can be purchased from SparkFun electronics.
	
As stated above, we used the open source Arduino IDE to develop our on-board firmware. This software can be downloaded from arduino.cc free of charge and installed on a variety of computing platforms. This is a very simple IDE whose main function is to recognize keywords in the Arduino APIs. It allows the user to write firmware in the C variant specific to the Arduino and pull in a variety of built-in function calls. The firmware that results has the file extension .pde and can then be uploaded to an Arduino board. The other main feature of the IDE is a serial monitor that allows you to connect to the Arduino USART and send/monitor what’s coming across the serial pipeline. This is very useful for debugging, especially because the protocol we were using was custom and was subject to various inconsistencies and timing issues.

2.4.4 – Function Listing and Description
2.4.4.1 void setup()
Purpose: By default, whatever is in this function gets executed one time at
the start of the firmware execution. So we put all of our necessary initializations of variables in this function. This includes calling the serial communication API commands to open a serial port at 9600 baud, calling the servo APIs to attach our servo motor to one of the pins and setting it to the appropriate physical position, and most importantly initializing all of our digital pins to the appropriate input/output setting.
2.4.4.2 void loop()
Purpose: By default, whatever is in the loop() function gets executed over
and over again. This is just how the Arduino execution environment is set up. Thus, we really needed this function to be what checks for incoming commands and data from the PIU on the RS232 line. In essence this is an infinite while loop that checks for data and reacts appropriately.
Execution: This function repeatedly calls the Arduino Serial.available()
function. This function returns a 1 if there is data waiting to be read at the incoming serial buffer. Thus this is how we constantly monitor the buffer. If a byte is received, this function compares it to the predefined command codes and reacts appropriately.
2.4.4.3 void getCoordPairUnlatched()
Purpose: The purpose of this function is to carry out the first movement in
the cup movement sequence. The reason this is different, is because the first movement does not have an attached cup so we can go directly to the location without regard to what cups are in our path on the table surface.
Execution: When this function is called, the first thing that happens is the
byte representing “250” is sent to let the PIU know that we have correctly jumped into the function. Next, we read in the X coordinate from the serial port and send again the “250” byte as confirmation of reception. The function moveX is then called to take care of the x-axis movement. Next, we read in the Y coordinate and upon reception we send the byte “249” to confirm reception of the Y half. Lastly the function moveY is called to move in the y-direction.
2.4.4.4 void GetCoordPairLatched()
Purpose: The purpose of this function is to act as the general sequence of
execution for when the magnet is latched to a cup and a movement sequence takes place. Because there is a cup latched, this function must take into account where other cups are because it can’t always go in right angle movements. This is especially true for the cups that must move at a normal to the side of the pyramidal rack.
Execution: The execution of this function is fairly simple. When this
function is called, the first thing that happens is the byte representing “250” is sent to let the PIU know that we have correctly jumped into the function. Next, we read in the X coordinate from the serial port and send again the “250” byte as confirmation of reception. Next, we read in the Y coordinate and upon reception we send the byte “249” to confirm reception of the Y half. Next, we compare these two values and if we require movement in both the X and Y directions, we call the MoveDiag function. If not, we call the moveX then moveY functions to move at right angles.
2.4.4.5 void moveX()
Purpose: The main purpose of this function is to be the prime interface to
the x-axis motor. This is the function that is called every time there needs to be a movement in the x-direction. This function takes into account the direction that we need to move, the distance, and finished up the communication with the PIU.
Execution: Like other functions, the first thing done upon entering is to
send “250” back to the PIU just to aid in flow control. There are then three sub-cases of this function that depend on the direction in which we need to move. The first cases is if where we are going is less than where we currently are. In this case, the direction is set so that the cart moves to the right (smaller x). The second case is if we are moving to a greater x position. In this case the direction is set so that we move to the left (greater x). Lastly if we aren’t moving, nothing is done and the function exits. In each case, the function stepperXPulse is called with the difference in x in order to actually send pulses to the motor.
2.4.4.6 void moveY()
Purpose: The main purpose of this function is to be the prime interface to
the y-axis motor. This is the function that is called every time there needs to be a movement in the y-direction. This function takes into account the direction that we need to move, the distance, and finished up the communication with the PIU.
Execution: Like other functions, the first thing done upon entering is to
send “250” back to the PIU just to aid in flow control. There are then three sub-cases of this function that depend on the direction in which we need to move. The first cases is if where we are going is less than where we currently are. In this case, the direction is set so that the cart moves backwards (smaller y). The second case is if we are moving to a greater y position. In this case the direction is set so that we move forward(greater y). Lastly if we aren’t moving, nothing is done and the function exits. In each case, the function stepperYPulse is called with the difference in y in order to actually send pulses to the motor.
2.4.4.7 void MoveDiag()
Purpose: Since there are situations in the ten-cup pyramidal rack where
right angle movements can be used due to overlap in cups, we had to include a function to take care of moving in a diagonal. However, we could not just alternate between stepping in x and y because the angle needed wasn’t a 45, it was ~31 degrees. Thus, we took the ratio of steps into account and made it such that for every distance 2d we went in the y direction, we had to go 3d in the y-direction. Thus this function takes care of this movement.
Execution: The first thing that is done upon entering is compare the next
positions to the current position to determine which way to set the motor direction output pins. Next, we execute a for loop 273 times that steps the x-motor 4 times and the y-motor 3 times alternately. This ratio in steps was the ratio needed to achieve the 3:2 distance ratio. 273 times was the amount necessary to move the coordinate location we defined for every diagonal movement. We then messages “248” and “247” signifying completion of movement in the x and y-directions respectively.
2.4.4.8 void magOn()
Purpose: The purpose of this function is to rotate the magnet into the
position that lathces a cup. This function is called once we are at the position where a cup needs to be latched.
Execution: The only thing this function does is call magServo.write(90)
which rotates the servo to the vertical position where the magnets can engage.
2.4.4.9 void magOff()
Purpose: The purpose of this function is to rotate the magnet into the
position that detaches a cup. This function is called once we are at the position where a cup needs to be let go.
Execution: The only thing this function does is call magServo.write(0)
which rotates the servo to the horizontal position where the magnet is no longer attached to the cup.
2.4.4.10 void goToOrigin()
Execution: This function is what is called after every cup movement so
that we can return to the origin and reestablish correct positioning of our axis system. This function sets the appropriate directions and the steps in the x-direction while the limit switch output is low (signifying not home). Once the x position is 0, the y-motor steps while the y limit switch is low, also signifying the cart is not back yet.
2.4.4.11 void stepperXPulse()
Execution: This function takes the number of half-inch locations that we
need to move, translates that into steps and pulses the step_outX pin which steps the motor on the rising edge of the pulse. We delay 900 microseconds here, as this was the best performance we achieved.
2.4.4.12 void stepperYPulse()
Execution: This function takes the number of half-inch locations that we
need to move, translates that into steps and pulses the step_outX pin which steps the motor on the rising edge of the pulse. We delay 900 microseconds here, as this was the best performance we achieved.

2.4.5 – Variable Information

Table 2. Embedded Firmware Variables
	Variable Name
	Data Type
	Purpose

	testByte
	Byte
	Temporary holder for the commands outgoing to PIU

	step_outX
	Int
	Link the name to pin number for stepping in the x-direction

	step_outY
	Int
	Link the name to pin number for stepping in the y-direction

	dirX
	Int
	Link the name and pin number for controlling direction of x-movement

	dirY
	Int
	Link the name and pin number for controlling direction of y-movement

	xHome
	Int
	Define pin for the x limit switch input

	yHome
	Int
	Define the pin for the y limit switch input

	currentX / currentY
	Byte
	Keep track of current position in each axis

	nextX / nextY
	Byte
	Keep track of next needed position

	tempX /tempY
	Byte
	Keep track of difference between next and current positions

	magServo
	Servo
	Servo object to control latching

2.4.6 – Pin Mapping

Table 3. Embedded Firmware Pin Mapping

	Pin Number
	Purpose (I/O)

	3
	Y direction digital pin(O)

	4
	X direction digital pin(o)

	5
	Y step digital pin(O)

	6
	X step digital pin(O)

	7
	Y limit switch input(I)

	8
	X limit switch input(I)

	9
	Servo signal line(O)

2.4.7 – Subsystem Testing
Like with the PIU, the functionality of the embedded system was well defined and easy to observe. To test each of the functions, we connected the embedded unit to the PIU and sent all of the commands that would trigger each of the functions. If behavior besides what was expected occurred, we were able to isolate the problem because of the different confirmation bytes we were sending back to the PC.

2.5 Detailed Operation of X-Y Mechanics Subsystem
2.5.1 – General Mechanical System Needs
The X-Y mechanical system was necessary for the beverage pong game to establish precision in cup position and movement. This system needed to be able to get to specific points in the entire range of game play so that cups could be moved around this space when necessary. Establishing a coordinate plane defined by the x- and y-axes was the best way to assign these cup positions. In order to do so, the x- and y-axes needed to be constructed with full range of motion.

2.5.2 – Engineering Decisions
	2.5.2.1 – Approach 1: Drawer Slides
The first approach that was taken to construct the X-Y mechanical system was to use two metal drawer slides to serve as the y-axis with a wood board attached across them that would serve as the platform for motion in the x-direction. These drawer slides were modified to allow them to slide further than the normal range by getting rid of the metal restraint that kept the drawer slides from over-extending; this allowed for a wider range of motion to maximize the game play space. To provide space for the motor beneath the drawer slides and attached wood board, two 2”x4” boards that were 2 feet long were attached together using four 2” screws. This process was then repeated so that a set of these 2”x4”s would go under each drawer slide. These boards were screwed into the table from below using four 2” screws. The drawer slides were then screwed into the 2”x4” boards from the top using two 2” screws, which went into the stationary part of the drawer slides. A 1”x8”x4’ wood board was attached to the movable part of the drawer slides using 1” screws in two places to stabilize the board. When constructing this concept, extreme precision was necessary so to ensure that the drawer slides were parallel and would not buckle when extended. This was done by very precise measurements when spacing the boards and the drawer slides and using a level when attaching the boards to the table.

This drawer slide concept was eventually scrapped because the drawer slides provided too much friction for a small stepper motor to be able to effectively move. Additionally, the wood board provided significant weight and made motion more difficult. For this concept, a very powerful motor would have been necessary and would have been outside of the price range.

2.5.2.2 – Approach 2: Extruded Aluminum Track
The next and final approach that was taken involved using aluminum track instead of the drawer slides. The basis of this system is a framework made from T-slot extruded aluminum. The T-slot design makes this project very adjustable and easy to modify; it also cuts down on the amount of power tools necessary for the project because with the T-slot design, the system can be pieced together with nuts and bolts. The system consists of two 2” wide aluminum rails running in the y-direction sitting about 36” apart. On each of these rails sits a timing belt and pulley system. The pulleys sit in between two pieces of high-density polyethylene (HDPE) on a smooth 0.25” shaft. Initially, our design called for 1”x2” metal L-brackets with a 0.5” hole drilled out and centered 1.5” from the bottom of the 2” tall bracket. This hole held a ball bearing with a 0.5” diameter that supported the 0.25” shaft. Our design required twelve ball bearings to be used, which would have been very expensive. We therefore used the HDPE, which is smooth and thick enough that bearings were not necessary. The HDPE was milled to our specifications – 2”x2.5” block with a 0.25” hole for the shaft that is 1.5” from the bottom – on the Techno CNC in the Mechanical Engineering Lab to allow for smooth easy rotation without requiring the use of bearings.

Between each set of pulleys sits a 77” trapezoidal-toothed timing belt running the length of the aluminum rails. The pulleys are driven by the motor subsystem at one end. There is a 44” long aluminum shaft spanning the rails driving both timing belts simultaneously to prevent racking. We initially used a 0.24” threaded shaft, but this caused the pulleys to move side-to-side as the shaft was rotated, which decreased precision of movement and caused the belts to not be straight. This shaft was replaced with a 0.25” smooth shaft, which was slightly too thick to fit through the pulleys. Because we did not want to force the pulleys onto the shaft and potentially break them, we sanded the shaft down slightly so that it fit through the pulleys without too much force.

Mounted on top of these parallel rails is our x-axis platform, which is a 42” piece of 3” wide T-slot aluminum. This platform is supported by four 1.5” brass rollers – two at each end – that glide along the aluminum rails. The rollers are positioned on an angle so that they stabilize the x-platform in all directions. The platform is attached at each end to the timing belts; these belts are cinched onto the x-platform using a piece of thin, smooth aluminum bracket that is 0.5” wide and 2” long so that the belt does not slip. At this point, the x-platform can be driven freely back and forth along the y-rails. The completed X-Y axes can be seen in Figure 2.

[image:]
Figure 2. X-Y Mechanical subsystem.

The next step is to construct the carriage to ride along the x-platform. The x-platform is fitted with two pulleys and a timing belt just like each of the y-rails. The carriage for the x-platform is composed of a 6” long piece of 3” wide T-slot aluminum, the same material as the x-axis. This carriage has four 1.5” brass rollers that allow it to roll along the x-axis; these rollers are connected using one T-bracket on each side that supports two of these wheels. A portion of the T-bracket hangs down from the carriage below the x-axis and each bracket has another brass roller below the x-axis that provides additional stability and keep the carriage stabilized on the track and prevents it from falling off. This carriage design can be seen in Figure 3, along with the angled brass rollers supporting the x-axis.

[image:]
Figure 3. Carriage design on x-axis.

This carriage is then bolted to the timing belts as previously discussed. At this point, the carriage can trace out a full range of motion in the x- and y- directions. The carriage also has the capacity to support the magnetic latching subsystem. The shafts and pulleys will be constructed to allow for easy coupling to the motor and driver subsystem.

2.5.3 – Tuning and Adjustment Importance
Tuning and adjustment of the X-Y mechanical subsystem was very important to ensure that the carriage could reach all points in the play field. The first area that required precision was the two pieces of aluminum tracking that made up the y-axis and needed to be parallel to ensure that the x-axis track would not buckle and could easily traverse the entire range in the y-direction. Another important adjustment was making sure that the four brass rollers that supported the x-axis were all at the same angle and rolled smoothly along the y-axis. This was done by using factory-cut HDPE blocks that were all the same thickness to raise the x-axis to the desired height and then measuring its distance from the ends of the table and adjusting the wheels to be securely on the track. If the wheels were not all equally riding on the track, the x-axis could be unstable and either tip over, fall off the track, or buckle while moving along the y-axis, so much time was spent adjusting these rollers. To further ensure smooth motion, the two pulleys that supported each belt needed to be at the same place on the track to keep the belt smooth. The pulleys also needed to be at the same height or the same problem would be encountered. The milled HDPE blocks with precise holes for the shaft that supported the pulleys resolved this issue.

2.5.4 – Subsystem Testing
To test this X-Y mechanical subsystem, it was necessary to ensure that the x-axis moved smoothly along the y-axis and that the cart traveled smoothly on the x-axis. This could be tested simply by pushing the cart to various locations up and down each axis to make sure the movement was smooth and all locations could be reached in the play field.

2.6 Detailed Operation of Motor and Driver Subsystem
2.6.1 – General Motor and Driver Needs
The automated beverage pong table required motors to control the movement of the X-Y mechanical subsystem. These motors needed to be precise enough for the cart to be able to reach all the points in the play field within 1/8”. This level of precision was necessary due to the type of magnetic latching device used to engage and disengage the cups for movement, which will be discussed in a later section. To establish this precision in cart placement, the team decided to use stepper motors, which can divide a full rotation into a large number of steps and can be controlled precisely without any feedback mechanism. A driver board was chosen that could be an intermediary between the commands sent from the computer program and those sent to the stepper motor. One stepper motor would be required for each axis.

2.6.2 – Engineering Decisions
When deciding what kind of motor to use for moving the x- and y-axes we immediately settled on stepper motors because they are known for their precision, which was a very important aspect for our X-Y mechanical subsystem. We initially purchased a small Mercury Motor stepper motor and connected it to the shaft that controls the pulleys attached to the y-axis that power that x-axis up and down. This motor was able to move the x-axis slightly, but the movement was not precise and the direction of motion would abruptly change. We determined that we needed a motor with more torque to be capable of moving the aluminum tracking. We then connected this small stepper motor to the shaft that had the pulleys that control the motion of the cart along the x-axis. This stepper motor was capable of moving the cart, but was still sporadically changing direction. We were not sure if we had a problem with the motor or the driver board. We ordered a new driver board and the Mercury Motor was then able to move the cart with precision along the entire range of the x-axis so we determined that this motor was sufficient to use here. If the motor wires are detached while the driver is still powered, it can blow the IC, and we believe this to have been the issue with motor control and the driver board.

For moving the x-axis along the y-axis, we chose to use a 12V DC stepper motor with more torque than the Mercury Motor stepper motor because this motor needed to be more powerful to move the entire x-axis. The two stepper motors can be seen in Figure 4 – the smaller motor on the left is the Mercury Motor stepper motor that controls the cart and the larger motor on the right is the 12V DC stepper motor that controls the x-axis movement on the y-axis.

[image:]
Figure 4. Stepper motors moving the x-axis and carriage.

The stepper motors can be programmed to send incremental steps to rotate the attached shaft, which will then rotate the pulleys and timing belts. This will allow for the cart to move in the x- and y-directions and get to the specified location on the table. The Arduino boards will act as an intermediary between the stepper motor and the commands coming from the computer program.

To attach the motor shafts to the 0.25” aluminum shafts that the pulleys sit on, we initially tried using heat shrink. This worked when we had a threaded shaft because the heat shrink held well to the threads, but on the smooth motor shafts, the heat shrink would easily slide off, so this option was not used. Our next option was 3/16” inner diameter rubber tubing, which was slightly smaller than the smooth shaft and motor shaft diameter and tightly held the shafts together, especially because a vacuum was created in the tubing between the shafts so the rubber tubing could not be pulled off the shafts. This option was used while we waited for shaft couplers to arrive. When we got the shaft couplers, one didn’t fit on the 12V stepper motor because this shaft was not exactly lined up with the smooth shaft and the other coupler was poorly manufactured and did not attach the Mercury Motor stepper motor to the shaft tightly enough. Because of this, we kept the rubber tubing on the shafts as couplers.
			
The driver boards were kept in an electronics box near the end of the table at the bottom of the y-axis. From here, there was a 12V power supply coming in, as well as the USB from the computer. All the wires to the motors and limit switches were coming out of this box and needed to be kept neat. The wires going to the Mercury Motor stepper motor needed to be long enough to travel the distance of the y-axis as the x-axis moved and they needed to stay untangled and out of the way of the axis. This was accomplished by running a rod parallel to the y-axis and using zip-ties looped through the bundle of wires that held the wires along this rod and out of the way. This was mimicked along the other side of the table next to the other y-axis track for the wires going to the motor on the x-axis cart and the limit switch on the x-axis to keep the wires out of the way of the track. The electronics box (bottom middle) and the rod that keeps the wires from tangling (up the left side) is shown in Figure 5.

[image:]
Figure 5. Electronics box and wire-detangling solution.

This project also uses a servo motor for the magnetic latching subsystem, which will be discussed in the next section.

2.6.3 – Motor Choices
One of the most important parts that we had to choose turned out to be also one of the biggest problem spots for our group and our project. We knew at the outset that we wanted to pursue the stepper motor route because it would give us the best precision as well as the fact that there are a plethora of different driver options out there. What we didn’t know however was what size we needed, what torque our system required, what speed at max torque we needed, etc. Our initial attempt was to buy the only stepper motor the SparkFun electronics had to offer. It was a small 4-wire bipolar stepper motor in the NEMA 23 size class made by Mercury Motor. It had a max current rating of 333mA in each of its two phases and could be powered by 12V. Before we had our mechanical sub- system built we made a test program on the Arduino and tested the motor. It seemed to work well but we had no idea if it fulfilled our torque requirements. If it did, we were going to buy another one to use on the second axis. After construction, we finally integrated our motor and tested it on both axes. It was perfectly fine for powering the x-axis cart motion, however, under no circumstance could we get it to be powerful enough to control y-axis motion.

In attempting to get a new motor for the y-axis we now had a new requirement – the motor needed to have greater than 3.2kgcm of torque (because we knew our other motor was too small). The only affordable motor that we could get from any source to fulfill all of our requirements was a 6-wire unipolar stepper motor from Jameco. This had 6.2kgcm of torque and also was within our current and voltage limitations. We had some doubts as to if we could hook this 6-wire motor up to our 4-wire driver board; however, after some searching on the Internet we found that we could hook up the center tap just like one end of the original coil and essentially only use half the available coil. This modification, though, is what we believe to part of our problem in our final implementation. In y-axis movement, our motor tends to skip some steps and we think it’s because it is not driven properly. This is something that needs to be looked at as the project develops.

See the next section for a list of pin connections for both the motors and driver boards.

2.6.4 – Driver Board Choices
One of the inherent limitations in our motor selection was our driver board. Since we knew we were using an Arduino as the main embedded intelligence, it required us to have a driver board intermediary that would accept digital pulses for both direction and step signals. We found a product that met these requirements in SparkFun’s EasyDriver board. This open source board uses an A3967 Dual H-Bridge IC to send the correct currents to the coils. It also runs off of 5V for logic and accepts 12V power supply. We linked the Arduino and the driver board up on different pins for each motor and we had our control subsystem.

As mentioned previously in this document, we quickly realized that this board was not the most reliable robust controller solution. We damaged and destroyed two of these driver boards on separate occasions as a result of applying reverse polarity power and removing the motor lines while the driver was powered on. These caused the H-Bridge IC to burn. However, because of ease of use, once we got the hang of applying these boards, we decided to stay with them as a solution because of the ease with which we could interface to them. The motor wires and corresponding connection locations are summarized in Table 4.

Table 4. Electronics Signal Mapping

	Signal/Wire
	Connection Location

	x-Stepper Yellow
	x-Driver Board Out1A

	x-Stepper Blue
	x-Driver Board Out1B

	x-Stepper Red
	x-Driver Board Out2A

	x-Stepper Green
	x-Driver Board Out2B

	y-Stepper Red
	y-Driver Board Out1A

	y-Stepper White
	y-Driver Board Out1B

	y-Stepper Yellow
	y-Driver Board Out2A

	y-Stepper Black
	y-Driver Board Out1B

	x-Driver Board Direction
	Arduino Digital Pin 4

	x-Driver Board Step
	Arduino Digital Pin 6

	y-Driver Board Direction
	Arduino Digital Pin 3

	y-Driver Board Step
	Arduino Digital Pin 5

	x-Driver Board/y-Driver Board Motor Power/GND
	12V Wall Adapter V+/GND

	x-Driver Board/y-Driver Board Logic Power/GND
	Arduino 5V Out/GND

	12V Wall Adapter GND
	Arduino GND

2.6.5 – Subsystem Testing
To test this subsystem, the computer needs to send commands through the Arduino boards to each of the stepper motors. A basic program was written that accepted computer keyboard input that would correspond to the cart or axis moving back and forth depending on what key was pressed. This allowed us to test the Arduino’s ability to receive commands and correctly send them to the stepper motors. Another program was written that had the cart travel in a square – first up the y-axis, then left on the x-axis, then down along the y-axis, and finally back right on the x-axis to the starting position. All these programs allowed us to test the functionality of the motors and verify that they could move the cart in the entire range of the play field and that both motors were precise enough in their positioning.

2.7 Detailed Operation of Magnetic Latching Subsystem
2.7.1 – General Latching System Needs
The magnetic latching subsystem required having a magnet or magnetic material below and above the playing surface of the table so that the cart could engage with a cup above the surface and move it to the appropriate location in the play field. The magnetic system needed to be able to engage and disengage in the appropriate location so that only the desired cup was moved and there was no interference with the other cups. The team determined from the start that we wanted to minimize the game-piece specialization that was necessary, but customized coasters for the cups to sit in were required so the magnetic system on the cart had something to latch to.

2.7.2 – Engineering Decisions – EM vs. Permanent Magnet
The team initially decided to use permanent magnets for latching. We acquired some neodymium (NdFeB) magnets for initial testing and found that they were capable of attaching to another NdFeB magnet through a 1” thick table. These are the strongest type of permanent magnets made. The magnet we were testing was cubic-shaped and was larger than we wanted to use. Additionally, these magnets were expensive and if included under the table on the cart and in ten specialized coasters, would have quickly become expensive. We then acquired some short cylindrical-shaped NdFeB magnets and tested these through the same surface. By stacking these magnets, we were able to control how strong we wanted them to be and how precisely they could move a magnet on the other side of the table.

We considered using an electromagnet so that we could control the magnetic field and turn it “on” or “off” by changing the current or stopping it completely. By the time we received this electromagnet, we did not have enough time to design the circuitry to drive it, so we did not pursue this option. We decided to continue using the NdFeB magnets as the latching option.

Once we decided that we wanted to use the permanent magnets, we decided that a servo motor would be the best option for the latching device on the cart because it would allow us to rotate the magnets 90 and engage or disengage with the customized coasters. This would break the magnetic field between the magnets and allow the cart to move away from the cup and not keep dragging it along or knocking it over. This would also prevent the magnets on the servo on the cart from interfering with other coasters. To achieve a desired height for the magnets attached to the servo motor, we attached a bracket to the cart and attached the servo to this bracket. An L-bracket with four stacked NdFeB magnets was attached to the head of the servo so that the L-bracket rotated when the servo rotated, thus allowing engaging and disengaging with a magnet above the playing surface in a coaster. By increasing the number of magnets under the table, we were able to increase the strength of the magnetic field.

Once the magnets and the servo motor were attached to the carriage, the height of the play surface could be determined. We wanted to have a clearance of about ¼” between the top of the stacked magnets and the bottom of the play surface. To do this, we used 1”x10” pine boards and milled them to have a ridge that fit onto the side of the table – this required two boards that were 8’ long and two boards that were 6’ long to fit the perimeter of the table. The ridge was 5/8” deep and ran the length of the boards. The top of the board came 7 ¼” above the surface of the bottom of the table. A 3/8” x 5/8” groove was milled into the inside of the top of the boards that would allow a 4’x8’ surface to rest on the sideboards. These boards were then glued on with wood glue and nailed for extra support. Metal brackets were used in two corners to keep the corners tight. The 6’ board at the bottom of the y-axis that had the electronics box near it was not permanently attached so that testing could be performed and we could easily see what was happening while a surface was on the table. This board was held on with latches on each side so that it could be easily removed. This board had two 0.5” holes drilled through it – one for the USB cord and one for the 12V power supply. The surface we chose to use was 1/8” thick 4’x8’ whiteboard-type board. This board was not very rigid so we got a ¼”x4’x8’ pine board to provide extra support for the slippery white board. We considered options such as Lexan or Plexiglas for the surface so that they were smooth and possibly opaque, but the whiteboard was most cost-effective. The pine board we had was too warped to be used as support, so we built a cross beam to support the whiteboard instead of having a full-table support under it. This also gave us a thinner surface to work with, so the magnets were able to latch more effectively. This is one area that caused some issues. Because the whiteboard is not completely rigid, there are some places were the surface slightly sags, causing the magnets under the table to scrape the surface and not reach the desired location. Have a completely rigid surface would eliminate this problem.

The final step in the magnetic latching device was to create the custom coasters. For the coasters, we used 3.5” diameter PVC pipe and cut it into 1.5” thick pieces. We cut out 3.5” diameter cardboard circles and attached these to one opening in each of the PVC pieces using Gorilla Glue. We then stuck 3” diameter circular felt pads onto the cardboard because these slid well along the whiteboard. The 3” felt pieces were pre-cut and although they were slightly smaller than the PVC pipe, they reduced the surface area, thus reducing friction. We then Dremelled a hole through the cardboard and slightly into the felt pad that was deep enough for a NdFeB magnet to sit in. This magnet could then engage with the magnet on the cart below the play surface.

2.7.3 – Operation with Embedded Intelligence
For the magnetic latching device to work, the servo motor needed to receive information on when to rotate to engage and disengage with the magnetic coaster in the correct location. Commands were established that the servo could interpret for when to rotate its arm after a correct position was reached – either under the cup to engage the magnetic latching and begin movement or to disengage the latching to drop a cup off at a desired location.

One last thing that needs to be mentioned is how the servo connected to the Arduino. The servo motor was standard in the sense that it had three wires – red, black, and white. In this scheme, the red wire is power and we connected it to Arduino 5V out. The black wire is ground and we connected it to Arduino GND. Lastly, the white wire is signal so we connected it to Arduino digital pin 9.

2.7.4 – Subsystem Testing
Two-way communication between the Arduino and the computer allowed the commands to be sent to the servo and then for the computer to know when the servo received and executed the appropriate command. This was initially done by running a test sequence and clicking on a cup in the GUI and watching what happened in the X-Y mechanical subsystem and where and when the servo arm rotated. After it was established that this motion was happening at the correct location and time, the surface was put on and a cup was placed in a known location. The test then made sure that the servo and magnets below the play surface were able to successfully engage a cup in the appropriate, predetermined location, move it to the desired new location, and drop the cup off.

2.8 Limit Switch Sensors
2.8.1 – Motivation for Sensors
One of the concerns we had about the reliability of the system was whether or not consistently using relative positioning for the coordinate system would provide reliable results. Since all we are doing is calculating distances to step based on the current position, if one position was off, the next one would be as well. Thus we decided it was absolutely necessary to implement limit switches to detect the home position (0,0), which we chose to be the bottom right-hand corner of the playfield. We decided to use optical limit switches because we found one that ran off of 5V and would provide a signal fast enough and strong enough to trigger digital pins on the Arduino (High to low transition when something is blocking due to the pull-up). The operating circuit for the limit switch was soldered onto perf-board and mounted on each axis of the mechanical system. Small metal attachments were attached to the cart in ways that would break the plane of the optical limit switch when the cart was in the home position. The part we chose was a Sunrom Technologies MOC7811. These were the only sensors that we had in the system.

2.8.2 – Circuit Diagram Implementation
Figure 6 is a picture of the minimum operating circuit that was implemented in our project to utilize the limit switches.
 (
To Arduino 5V
To Arduino GND
To Arduino Pin 7 or 8
)

Figure 6. Limit Switch Operating Circuit.

2.9 Cellular Phone Android Application
As a late project addition, a cellular phone application was developed for Android devices. This application has a display screen similar to what the user saw on the computer GUI that showed the ten-cup triangular rack. When a cup was made, the user could click on the cup on their Android mobile device and the cup would be removed from the play field, exactly as it would have if the cup were clicked on the GUI on the computer. The phone communicated with the computer over UDP connection. This application software was put together quickly for the demonstration and has areas where it could be improved.

3. Systems Integration
To test the beverage pong system as a whole, it was important for each individual component to be working individually first. As discussed in previous sections, a procedure was followed to verify each subsystem. For the X-Y mechanical subsystem, the x-axis and cart were simply pushed around the entire coordinate plane to make sure that the entire play field was covered and could be reached by our designed track and carriage system and that the pulleys and belts were sufficient for this motion. We then integrated the stepper motors – one on each axis – and made sure that they had enough torque to move the x-axis and carriage. This also required testing the Arduino’s ability to receive and send commands between the computer and stepper motors so that the motors moved accordingly. One the motors were able to move around the x-y plane based on commands from the computer, the servo motor with the magnetic latching device needed to be tested. The first test was whether the servo could move the arm in a full 90 range without hitting the surface of the table. Once it was determined that this movement was happening in the appropriate location on the table based on cup positions that had been mapped out, the surface was put on with one side of the table unattached. This allowed us to see what was happening with the mechanical system inside the table, as well as see what was happening with the cups on the play surface. The next test that was performed was making sure that the magnetic system on the servo motor could engage with the magnetic coaster and was precise enough to be directly under the magnet in the coaster. This was done by placing a coaster with a cup in it on the play surface in a known location and seeing if the servo motor on the cart could successfully pick it up and smoothly move it to a new location. The final step in testing the system integration was running the software and clicking on a cup in the GUI and watching the cup get magnetically engaged and moved to the appropriate new location. Once this was achieved, we were able to click each cup and make sure it moved to its position outside the field of active play, which meets all of our system requirements.

4. User Manual
4.1 Product Installation
The table arrives pre-made and requires very little installation. The table is a closed box and only requires the user to ensure it is sitting safely on some surface that can support its weight. Multiple sawhorses are ideal for this purpose; however, any flat surface that places the top of the playing surface at a comfortable level is acceptable.
	
After settling the table at an appropriate height, the user must supply the power and communication signals to the table through the port on the edge of the table nearest to the playing field. The black power cord should be used to run from a regular wall outlet to the hole on the left side of this port. The gray USB cord should be connected to the USB port on a computer that has the software necessary for game play. These cords are shown in Figure 7. After making these connections, the table is powered and ready for game setup.

Figure 7. Power cord (left) and USB (right) on the side of the table.

4.2 Product Initialization
After the correct power and USB inputs are connected to the table, the user begins the game by opening the program titled “Automated Beverage Pong.” Upon opening this link, the user will see a screen with 10 red circles in the shape of a triangle and two buttons. In addition, the user must place all 10 cups in the 10 magnetic coasters that are provided with the system. These coasters are designed to sit within the 10 circles that are marked on the surface of the table. Make sure the cups are placed as accurately within those circles as possible. In order to begin a new game, the user must press the “Start Game” button.

After this initialization of game play, the user is set to begin. The rules of this game are as follows:

Teams exist in pairs of two. Each team member throws one ping pong ball at the rack of cups and attempts to land a ball in one of the cups.
After a cup is made, it must be removed from the field of play. This portion of the game is automated by our product. In order to have a cup automatically moved, the user simply clicks on the corresponding circle of the game play interface. This cup movement will take a few seconds to occur, and this time may vary depending upon which cup is made (the middle cup will take the longest to remove from the playing field). Each cup has a specific holding spot along the side of the table, where the system will drop it off after it is eliminated from play.

If the user wishes to terminate game play early or wishes to signify the end of the game to the computer, he must press the “End Game” button so that the computer will recognize the state of game play.

4.3 Proper Operation
When power is supplied to the table, the stepper motors often create a high frequency noise that is audible to those near the table. This is normal and should not cause concern to the user(s). The system is functioning correctly if two basic things occur:
The red circle on the computer screen disappears after being clicked by the user.
The cup corresponding to the circle chosen on the screen is dragged out of its original place and into its holding spot along the side of the table. The act of moving the cup across the surface takes some time to occur so do not be discouraged if you hear movement below the table and see no immediate movement of the cup on the surface. This is particularly true when the user sinks the middle cup. Because this cup is locked between all of the other cups in the triangle (assuming those surrounding it have no been hit yet), this movement requires relocating two other cups in the rack to designated “waiting” positions in order for the middle cup to be removed without disturbing the rack. After two of the side cups are moved out of the way and the middle cup is dragged to its holding spot on the side of the table, the system will return the other two cups (if they are still not eliminated) to their original spots. With the exception of the middle cup, all other cup movements are relatively straightforward and are able to be moved directly to their holding spots without disturbing other cups.

4.4 Troubleshooting
If either or both of the conditions in section 6.3 are not true, then the system requires troubleshooting. When troubleshooting the system, the user should first unplug the power and USB connection from the table. Eliminating power from the system is essential because it guarantees safety for both the user and the components below the surface of the table. Next, the user should remove the white surface from the top of the table such that the mechanical underpinnings of the table are visible and easily accessible. The user should make a visual check of the system, which will insure that all parts are intact. This visual check should first focus on the cart on which the magnet itself sits. Make sure that no obstacles, such as cables or debris, are preventing the cart from moving along its intended path. Next, the user should look at the rubber couplers that connect the stepper motors to the shafts and corresponding pulleys on the x- and y- axes. These couplers may come loose over time and require replacement. As the rubber becomes looser, the shaft and pulleys will slip and the cart will miss steps and, consequently, its targeted location.

After both of these simple conditions have been confirmed as true, the user should return the cart back to the point of origin (the bottom right corner of the grid). When the origin is reached, brackets will break the plane of both limit switches. Then, the user should restore power to the table by reconnecting the black and gray cords. After powering the table, make sure that the magnet starts in the “unlatched” position (it is parallel to the surface of the table). If this is not true, then remove power and place it in this position. If the magnet starts in the “latched” position, then it will drag undesired cups and troubleshooting will be necessary again. When the table is powered and the magnet sits in the “unlatched” position, the user can replace the surface of the table and begin game play as stated in Section 4.2.

A less prevalent issue that arose numerous times throughout testing is the misalignment of the wheels on both sides of the y-axis. These wheels are locked on an angle by screws that can come loose over time. As these wheels become loose, they skew the angle of the x-axis track that moves and make movement very difficult in the y-direction. This increased force required for movement often leads to missed steps in the y-direction. As with the other troubleshooting methods explained above, correction of the wheel angles should only take place when the table is unplugged. These adjustments are simply made with an Allen wrench, but the correct angle can be challenging to achieve and must be earned over a series of trial and error adjustments.

5. Future Design Changes
5.1 Hardware Changes
The first change we would make to the hardware before marketing this project is to get a stronger motor for moving the x-axis up and down the y-axis. Although this 12V DC stepper motor has much more torque than the smaller Mercury Motor stepper motor used to power the cart, it often has issues with start-up torque, which can cause it to skip some steps and decrease the accuracy of movement. When attempting to move cups to holding locations outside of the active field of play, this is not as much an issue as attempting to incorporate game initialization, where cup placement has to be very precise so that the rim of each is touching those surrounding it without knocking over or pushing other cups out of the way. This precision is also essential in cup re-racks for similar reasons.

Another change would be to add ball bearings to all moving axles. Instead of ball bearings for all shaft and pulley systems, we used HDPE because of cost issues. The use of ball bearings would allow for smoother rotation and would be easier to implement because it would not require custom-cut HDPE.

An additional change we would make would be completing the other side of the table. This was not done due to budget constraints, but would enhance game play if both teams could take advantage of the precision and enjoyment of the beverage pong automation. After successfully completing one side of the table, to build the other side would either require complete imitation or could be achieved with an extension of the y-axis tracks to span the entire table and then only one x-axis track and cart would be needed that could traverse the entire length of the table. This would require longer custom-made timing belts to span the entire y-axis tracks and some software modifications because the other side would be a reverse mirror image of the current side’s cup arrangements.

The final hardware change we would make before marketing this product would be to have a half-inch thick Plexiglas surface. Plexiglas would allow the surface to be opaque so that the mechanical and electrical components within the table could be seen during the game. It is also lighter than glass and does not shatter, which is a concern on a large table that is used for beverage pong. Additionally, Plexiglas would provide a rigid surface, so there would be no sag or warping, which could cause the magnet to scrape the surface from below and get stuck, thus not making it to the desired location and interrupting game play. Plexiglas was not an option in our current design because of cost issues.

	5.2 Software Changes
One software change that we would like to incorporate would be the addition of cup re-racks. This would make game play more enjoyable and interesting. This was not done because it would have required major software additions and we did not have time to incorporate this aspect of game play.

An additional software change that we would like to make would be to develop a cellular phone application that would allow users to control game play from their cell phones. This would take away the need for a computer and would allow anyone to play from a smart phone. Cellular and web initialization could be used to initialize the game with the reception of a text message or Internet connection notification. Alternately, there could be a web server that accepts http game initializations. This would require the user interface to be able to communication wirelessly, which would require additional hardware to receive these signals.

6. Conclusions
The beverage pong table had a long of unique complexities and design challenges. The bottom-up approach that we took focused on designing, developing, and testing each subsystem before putting everything together. This was the best option for this type of project because it allowed us to work in steps and make sure each subsystem met the requirements before total integration. By starting with the X-Y mechanical subsystem, we were able to test the functionality of our track, belt, pulleys, and carriage before incorporating the motors and software. The next step was to incorporate the stepper motors and make sure that they were able to accordingly interpret commands sent through the driver boards from the computer. This allowed us to verify that our X-Y mechanical subsystem and motor and driver subsystem were functional. The final testing in our bottom-up approach was to incorporate the magnetic latching system – which required additional motor testing, customized coaster design, and magnetic engagement testing through the slippery surface. This also allowed us to test our protocols and verify their functionality with the entire project. We believe we laid out sufficient engineering requirements, design goals, and objectives and that we successfully met our project specifications in each subsystem and in the beverage pong system as a whole. There are some changes we would implement before going to market that were not met simply due to time and budget constraints, but believe that our current project is an enjoyable and interesting game and engineering challenge.

7. Appendices
Appendix A – Complete PIU Software Listing
	A.1 – MainWindow.xaml.cs
using System;

using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace PongPIU
{
/// This file is MainWindow.xaml.cs and it is the backend logic for the design file MainWindow.xaml.
/// The xaml file takes care of the user interface and was created using the drag and drop method in Visual Studio 2010.
/// This code is fully commented and will be attached as an appedix to the final report.

 public partial class MainWindow : Window
 {
 // Initalize the two variables used to track game progress
 int CupsHit = 0;
 string CurrentRack = "";

 public MainWindow()
 {
// This code is called the first time the program opens and initializes all of the variables
// to what they should be at the beginning of the game. This code also instantiates a GameState object which
// is the first layer in business logic and informatino management behind MainWindow

 InitializeComponent();
 ReRackButton.IsEnabled = false;
 RackBox.IsEnabled = false;
 CurrentRack = "Ten";
 Globals.PongGame = new GameState();
 tenRack1.Reset(); // Call to reset the UI for the initial rack
 }

 private void NewGameButton_Click(object sender, RoutedEventArgs e)
 {
 // This code is called whenever the New Game button is clicked on the UI
 // Essentially it resets the visibility of the ten cup rack and resets tracker variables

 this.tenRack1.Reset();
 CurrentRack = "Ten";
 ReRackButton.IsEnabled = false;
 RackBox.IsEnabled = false;
 }

 private void EndGameButton_Click(object sender, RoutedEventArgs e)
 {
 // This is the code that is called whenever the End Game buton is clicked in the MainWindow.
// The main thing this does is close the MainWindow and close the COM port that was opened to
 // communicate with the table.

 this.Close();
 Globals.PongGame.comChannel.COMport.Close();
 }

 private void tenRack1_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 // This code is executed every time a user clicks somewhere in the ten-cup rack. Basically
// it checks with the TenRack code to see how many cups have been hit, and if more than four have,
// it enables the re-rack box. Note we did not include re racks in this first version
// of the game but if the project were to continue, this is where the code work would start.

 this.CupsHit = this.tenRack1.GetCupsHit();
 if (this.CupsHit > 3)
 {
 ReRackButton.IsEnabled = true;
 RackBox.IsEnabled = true;
 }
 }
 }
}
	

	A.2 – TenRack.xaml.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace PongPIU
{
/// This file is TenRack.xaml.cs and is the backend logic for the TenRack.xaml UI element created in the VS2010 design view.
/// The main goal of this file is to control the visibility of the individual cups on the UI map. This element
/// is a custom user control and if other racks to be added, they would be implemented in the same way.

 public partial class TenRack : UserControl
 {
 // Initialize a tracker variable global to the class
 int CupsHit = 0;

 public TenRack()
 {
// This code is run once whenever the TenRack object is created. It sets the visibility of all the
 // cup objects so that they are all visible at the start.

 InitializeComponent();
 Ten1.Visibility = Visibility.Visible;
 Ten2.Visibility = Visibility.Visible;
 Ten3.Visibility = Visibility.Visible;
 Ten4.Visibility = Visibility.Visible;
 Ten5.Visibility = Visibility.Visible;
 Ten6.Visibility = Visibility.Visible;
 Ten7.Visibility = Visibility.Visible;
 Ten8.Visibility = Visibility.Visible;
 Ten9.Visibility = Visibility.Visible;
 Ten10.Visibility = Visibility.Visible;
 CupsHit = 0;
 }

 public void Reset()
 {
// This code is executed whenever MainWindow calls to reset this rack. It also
// sets all the cups to visible and galls to GameState to reset the current map.

 Globals.PongGame.changeMap("Ten");
 Ten1.Visibility = Visibility.Visible;
 Ten2.Visibility = Visibility.Visible;
 Ten3.Visibility = Visibility.Visible;
 Ten4.Visibility = Visibility.Visible;
 Ten5.Visibility = Visibility.Visible;
 Ten6.Visibility = Visibility.Visible;
 Ten7.Visibility = Visibility.Visible;
 Ten8.Visibility = Visibility.Visible;
 Ten9.Visibility = Visibility.Visible;
 Ten10.Visibility = Visibility.Visible;
 CupsHit = 0;
 return;
 }

 public int GetCupsHit()
 {
 return CupsHit;
 }

// All of the code below are 10 replications of a click event, one for each cup in the rack.
// Basically, each of the events makes the cup invisible, calls the SendMoveCommand in the GameState
 // to initiate the cup movements, and increments the CupsHit tracker variable.

 private void Ten1_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten1.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(1);

 }

 private void Ten2_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten2.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(2);
 }

 private void Ten3_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten3.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(3);
 }

 private void Ten4_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten4.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(4);
 }

 private void Ten5_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten5.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(5);
 }

 private void Ten6_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten6.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(6);
 }

 private void Ten7_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten7.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(7);
 }

 private void Ten8_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten8.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(8);
 }

 private void Ten9_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten9.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(9);
 }

 private void Ten10_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
 Ten10.Visibility = Visibility.Hidden;
 CupsHit += 1;
 Globals.PongGame.SendMoveCommand(10);
 }

 }
}

A.3 – GameState.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace PongPIU
{
 public class GameState
 {
 /// This file is GameState.cs and as mentioned in the MainWindow comments, it is the first
/// level of information management behind the UI. This class's primary function is to make instantiate and make calls to the
/// COMController, the communication manager, based on what cup is clicked on the UI.

 //Initialize necessary variables including a current map tracker and a new COMController instance.
 public string mapType = " ";
 public int[] cupStatus = new int[11];
 public COMcontroller comChannel = new COMcontroller();

 //Constructor to initialize the map type to the default Ten Cup rack
 public GameState()
 {
 mapType = "Ten";
 cupStatus = new int[11] { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
 }

 // This method is called by the MainWindow if the map is changed and it updates
 // the map tracker variable.
 public void changeMap(string mapIn)
 {
 mapType = mapIn;
 }

// The method below intiates commuication between the PIU and embedded intelligence
// by calling the COMController method SendMoveCommand with the number of the cup hit and the map type.
 public bool SendMoveCommand(int posMade)
 {
 cupStatus[posMade] = 0;
 comChannel.SetPosToMove(posMade, mapType);
 return true;
 }
 }
}

A.4 – Map.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace PongPIU
{
 public class Map
 {
 /// This file is Map.cs and is essentially a database reference for all cup movement sequences and racks.
/// Essentially for every map, all you have to do is add another (if MapType) statement and then the appropriate
/// cups and waypoints. Note that all waypoints are in half-inches with (0,0) at the bottom right of the playfield.

 //Create a holder instruction to pass back to COMcontroller
 Instruction TempInst = new Instruction();

 //Constructor
 public Map()
 {
 }

// This GetInstructions method is really the only method of the class. It is called by COMController to get the waypoints
// to package and send to the Arduino. For each cup there is an array of X locations and Y locations. Together
 // these form a set of ordered pairs that define the path of the cup.

 public Instruction GetIntructions(int CupPos, string MapType)
 {

 if (MapType == "Ten")
 {
 if (CupPos == 1){
 TempInst.Xwaypoints = new int[3] {26, 26, 0};
 TempInst.Ywaypoints = new int[3] {29, 46, 46};

 }

 if (CupPos == 2){
 TempInst.Xwaypoints = new int[4] {30, 36, 36, 56};
 TempInst.Ywaypoints = new int[4] {22, 24, 46, 46};

 }

 if (CupPos == 3){
 TempInst.Xwaypoints = new int[4] {22, 16, 16, 0};
 TempInst.Ywaypoints = new int[4] { 22, 24, 37, 37 };
 }

 if (CupPos == 4){
 TempInst.Xwaypoints =new int[4] {34, 40, 40, 56};
 TempInst.Ywaypoints =new int[4] {15, 17, 28, 28};
 }

 if (CupPos == 5){
 TempInst.Xwaypoints = new int[20] {30, 36, 36, 35, 34, 40, 48, 26, 32, 38, 44, 44, 56, 35, 36, 36, 30, 48, 40, 34};
 TempInst.Ywaypoints = new int[20] {22, 26, 34, 34, 15, 19, 19, 15, 19, 23, 27, 37, 37, 34, 34, 26, 22, 19, 19, 15 };
 }

 if (CupPos == 6){
 TempInst.Xwaypoints = new int[4] {18, 12, 12, 0};
 TempInst.Ywaypoints = new int[4] {15, 17, 28, 28};
 }

 if (CupPos == 7){
 TempInst.Xwaypoints = new int[4] {38, 48, 48, 56};
 TempInst.Ywaypoints = new int[4] {8, 8, 19, 19};
 }

 if (CupPos == 8){
 TempInst.Xwaypoints =new int[5] {30, 30, 46, 46, 56};
 TempInst.Ywaypoints =new int[5] {8, 0, 0, 10, 10};
 }

 if (CupPos == 9){
 TempInst.Xwaypoints =new int[4] {22, 22, 0, 0};
 TempInst.Ywaypoints =new int[4] {8, 1, 1, 10};
 }

 if (CupPos == 10){
 TempInst.Xwaypoints =new int[4] {14, 8, 8, 0};
 TempInst.Ywaypoints =new int[4] {8, 8, 19, 19};
 }
 }
 return TempInst;
 }
 }
}

A.5 – Instruction.cs
Instruction
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace PongPIU
{
 public class Instruction
 {
 /// <summary>
 /// This is the Instruction that creates a specified data storage element for the waypoint data for cup movement.
 /// This is the type of object that is passed to the COMController from the map to intiate data transfer to the Arduino.
 /// </summary>
 public int[] Xwaypoints = new int[1];
 public int[] Ywaypoints = new int[1];

 public Instruction()
 {
 Xwaypoints[0] = 0;
 Ywaypoints[0] = 0;

 }
 }
}

A.6 – COMController.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO.Ports;

namespace PongPIU
{
 public class COMcontroller
 {

 /// <summary>
/// This is the COMController class which is by far the most extensive file in this software package. This class
/// receives information from the GameState class as to which cup has been hit. This class then references the Map class
/// to get the waypoints/arrays that define the path for the cup. This class then carries out the communication and interaction
/// with the embedded intelligence. This code can be generalized for any cup movement/map except for the Ten-Cup rack middle cup which
 /// requires a special case that is quite complicated
 /// </summary>
 ///

// The first section in this code initializes all appropriate variables including a new instance of hte Map class
// a new holder Instruction, a few tracker variables and we open a new Serial Port on COM3 which is the port that our
 // Arduino is attached to.
 public SerialPort COMport = new SerialPort("COM3");
//Needs to be called with right COM name, baud, and bit settings
 public Map CupMap = new Map();
 public Instruction NewInst = new Instruction();
 public int PositionToMove;
 public string CurrentMap;

 //Constructor
 public COMcontroller()
 {
 // Here in the constructor we set initial values and set our serial communication properties
 PositionToMove = 0;
 CurrentMap = "Default";
 COMport.BaudRate = 9600;
 COMport.Parity = Parity.None;
 COMport.DataBits = 8;
 COMport.StopBits = StopBits.One;
 COMport.Handshake = Handshake.None;
 COMport.Open();
 }

// This method is the intermediary method between GameState and this class. It is called by an instance of the GameState
// class with the map type and cup to move in that map. This method then references the map to get the appropriate waypoints.
// If the cup made is the TenRack cup 5, we call a special situation method, otherwise it calls the general
 // SendCommands method to communicate with the Arduino.

 public void SetPosToMove(int position, string inmap)
 {
 PositionToMove = position;
 CurrentMap = inmap;
 NewInst = CupMap.GetIntructions(PositionToMove, CurrentMap);
 if ((position == 5) && (inmap == "Ten")) { this.moveMiddle(); }
 else {
 this.SendCommands();}
 return ;
 }

 // Method to reference map and get movement intructions
 public Instruction ReferenceMap(int RefPosition, string MapType)
 {
 NewInst = CupMap.GetIntructions(PositionToMove, CurrentMap);
 return NewInst;
 }

// This is the primary method of this class. Basically this uses the arrays received above to conduct
// movemnet in the mechanical system through communication with the Arduino.
 public void SendCommands()
 {
 byte[] xByte;
 byte[] yByte;
 byte[] codeByte = {255};
 int printByte;
 int xConf=0;
 int yConf=0;

 int arraySize = NewInst.Xwaypoints.Length;

// Send first waypoint pair - Use the command signifying cup not attached
 // as this is the first movement in the sequence.

// Send "255" command which signifies this is the first pair in the sequence
 COMport.Write(codeByte,0,1);
 //Wait for 250 confirmation that the Arduino received the
 while (xConf != 250)
 {
 xConf = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(xConf);
 }
 xConf = 0;

 // Convert the first X waypoint into bytes
 xByte = BitConverter.GetBytes(NewInst.Xwaypoints[0]);
 // Send the first X coordinate
 COMport.Write(xByte, 0, 1);
 printByte = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(printByte);

// Wait for confirmation that we have finished moving in the x-direction
 while (xConf != 248)
 {
 xConf = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(xConf);
 }

 // Convert the first X waypoint into bytes
 yByte = BitConverter.GetBytes(NewInst.Ywaypoints[0]);
 // Send the first X coordinate
 COMport.Write(yByte, 0, 1);
 printByte = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(printByte);

// Wait for confirmation that we have finished moving in the y-direction
 while (yConf != 247)
 {
 yConf = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(xConf);
 }

// Since we've reached the place where we want to attach to a cup, send the command
 // to latch the cup.
 codeByte[0] = 252;
 COMport.Write(codeByte, 0, 1);

// Now, while there are still waypoints to which we can move, we want to send
// the "254" command followed by the x coordinate and the y-coordinate
// waiting for the "250" and "249" confirmation codes in between and the "248" and "247"
// confirmation codes at the end. It is imperative to wait for confirmation that the
// Arduino is ready before sending the next byte because the Arduino's buffer may
 // not be able to respond fast enough.

 codeByte[0] = 254;
 for (int i = 1; i<arraySize; i++){

 COMport.Write(codeByte, 0, 1); //Send 254
 while (xConf != 250) //Wait for 250
 {
 xConf = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(xConf);
 }
 xConf = 0;

 xByte = BitConverter.GetBytes(NewInst.Xwaypoints[i]);
 COMport.Write(xByte, 0, 1); //Send x
 printByte = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(printByte);

 while (xConf != 250)
 {
 xConf = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(xConf);
 }

 yByte = BitConverter.GetBytes(NewInst.Ywaypoints[i]);
 COMport.Write(yByte, 0, 1);
 printByte = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(printByte);

 while (yConf != 249)
 {
 yConf = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(xConf);
 }

 while (xConf != 248) //Wait for X moved confirmation
 {
 xConf = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(xConf);
 }

 while (yConf != 247) //Wait for Y moved confirmation
 {
 yConf = COMport.ReadByte();
 System.Diagnostics.Debug.WriteLine(yConf);
 }
 }

 // Since we are now ready to release the cup, we can send the command that will \
 // initiate this functionality.
 codeByte[0] = 251;
 COMport.Write(codeByte, 0, 1);

[bookmark: _GoBack]// Since we are done with this movement sequence, we can send the command
 // to return to the origin and reset the relative positioning
 codeByte[0] = 253;
 COMport.Write(codeByte, 0, 1);

 }

 public void moveMiddle(){)[…]
 }
 }

Appendix B – Complete Embedded Intelligence Code Listing

#include <Servo.h> //Include the header that takes care of Servo control

//Declare global variables
int inByte = 0; // Holders for incoming data
byte testByte = 0;

int step_outX = 6; // StepX digital out pin
int step_outY = 5; // StepY digital out pin
int dirX = 4; // DirectionX digital out pin
int dirY = 3; // DirectionY digital out pin
int xHome = 8; // X home limit switch digital in
int yHome = 7; // Y home limit switch digital in

//Declare and initialize various holder variables
byte currentX = 0;
byte nextX = 0;
byte currentY = 0;
byte nextY = 0;
byte tempX = 0;
byte tempY = 0;

Servo magServo;

//Directional guides - Down y HIGH / Up y LOW / Left x HIGH / Right x LOW

void setup() {
 //Set up appropriate variables and serial port stuff
 Serial.begin(9600);
 Serial.flush();
 magServo.attach(9);

 //Set up pins for stepper pulses and direction and limit switches
 pinMode(8, INPUT);
 pinMode(7, INPUT);
 pinMode(6, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(3, OUTPUT);

 digitalWrite(dirX, HIGH);
 digitalWrite(dirY, HIGH);
 magServo.write(0);
}

void loop()
{
 //Code to continuously check the serial port for incoming messages and commands
 if (Serial.available()>0)
 {
 testByte = Serial.read();
 //Serial.write(testByte);
 if (testByte == 255) getCoordPairUnlatched();
 if (testByte == 254) getCoordPairLatched();
 if (testByte == 253) goToOrigin();
 if (testByte == 252) magOn();
 if (testByte == 251) magOff();

 }
}

void getCoordPairUnlatched(){
 //This is the function to receive the first pair of coordinates and react appropriately.
 // Basically we send the 250 confirmation, receive the x, move in the x-direction,
 // receive the y, and move in the y-direction

 testByte = 250;
 Serial.write(testByte);

 while (Serial.available() == 0){
 }
 nextX = Serial.read();
 Serial.write(nextX);
 moveX();

 while (Serial.available() == 0){
 }
 nextY = Serial.read();
 Serial.write(nextY);
 moveY();
}

void getCoordPairLatched(){
 //This is the function to receive the general pair of coordinates and react appropriately.
 // The main difference is that we have to check the pair for necessary oblique movement before we
 //intiaite right angle movements.

 testByte = 250;
 Serial.write(testByte);

 while (Serial.available() == 0){
 }
 nextX = Serial.read();
 Serial.write(nextX);
 testByte = 250; //Send command signifying X command was received
 Serial.write(testByte);

 while (Serial.available() == 0){
 }
 nextY = Serial.read();
 Serial.write(nextY);
 testByte = 249; //Send command signifying the y coordinate was received
 Serial.write(testByte);

 // If we must move in both directions to get to the next pair, call MoveDiag
 if ((nextX!=currentX) && (nextY!=currentY))
 {
 MoveDiag();
 }
 else {
 moveX();
 moveY();
 }

}

void moveX(){
 if (nextX < currentX){
 //Set direction to reverse (x right)
 digitalWrite(dirX, LOW);
 tempX = (currentX - nextX);
 stepperXPulse(tempX);
 }

 if (nextX > currentX){
 //Set direction to forward
 digitalWrite(dirX, HIGH);
 tempX = (nextX - currentX);
 stepperXPulse(tempX);
 }

 if (nextX == currentX){
 //Do nothing
 }

 testByte = 248; //Send command signifying X move is done
 Serial.write(testByte);
 currentX = nextX;

}

void moveY(){
 if (nextY < currentY){
 //Set direction to reverse
 digitalWrite(dirY, HIGH);
 tempY = (currentY - nextY);
 stepperYPulse(tempY);
 }

 if (nextY > currentY){
 //Set direction to forward
 digitalWrite(dirY, LOW);
 tempY = (nextY - currentY);
 stepperYPulse(tempY);
 }

 if (nextY == currentY){
 //Do nothing
 }

 testByte = 247; //Send command signifying Y move is done
 Serial.write(testByte);
 currentY = nextY;
}

void MoveDiag(){
 //THis function carries out the oblique movement in the appropriate directions
 // by moving the x-direction 4 steps for every 3 in the y-direction until we are clear of the rack.

 if(nextY < currentY){
 digitalWrite(dirY, HIGH);
 }
 if(nextY > currentY){
 digitalWrite(dirY, LOW);
 }

 if(nextX < currentX){
 digitalWrite(dirX, LOW);
 }
 if(nextX > currentX){
 digitalWrite(dirX, HIGH);
 }

 for (int i = 0; i<273; i++){
 digitalWrite(step_outX, LOW);
 digitalWrite(step_outX, HIGH);
 digitalWrite(step_outX, LOW);
 delay(1);
 digitalWrite(step_outY, LOW);
 digitalWrite(step_outY, HIGH);
 digitalWrite(step_outY, LOW);
 delay(1);
 digitalWrite(step_outX, LOW);
 digitalWrite(step_outX, HIGH);
 digitalWrite(step_outX, LOW);
 delay(1);
 digitalWrite(step_outY, LOW);
 digitalWrite(step_outY, HIGH);
 digitalWrite(step_outY, LOW);
 delay(1);
 digitalWrite(step_outX, LOW);
 digitalWrite(step_outX, HIGH);
 digitalWrite(step_outX, LOW);
 delay(1);
 digitalWrite(step_outY, LOW);
 digitalWrite(step_outY, HIGH);
 digitalWrite(step_outY, LOW);
 delay(1);
 digitalWrite(step_outX, LOW);
 digitalWrite(step_outX, HIGH);
 digitalWrite(step_outX, LOW);

 }
 delay(750);
 testByte = 248; //Send command signifying X move is done
 Serial.write(testByte);
 currentX = nextX;

 testByte = 247; //Send command signifying Y move is done
 Serial.write(testByte);
 currentY = nextY;

}

void magOn(){
 //Engage the cup by rotating the magnet to the 12 o'clock position
 magServo.write(90);
 delay(1000);
}

void magOff(){
 //Disengage the cup by rotating back to 3 o'clock (horizontal away from the cup)
 magServo.write(0);
 delay(500);
}

void goToOrigin(){
 //Serial.println("Going to Origin");
 //Set X and Y motors in reverse - Down and right
 digitalWrite(dirX, LOW);
 digitalWrite(dirY, HIGH);

 //While xhome is low, step X
 while (digitalRead(xHome) == LOW){
 digitalWrite(step_outX, LOW);
 digitalWrite(step_outX, HIGH);
 digitalWrite(step_outX, LOW);
 delayMicroseconds(300);
 currentX = 0;
 }

 //While yhome is low, step Y
 while (digitalRead(yHome) == LOW){
 digitalWrite(step_outY, LOW);
 digitalWrite(step_outY, HIGH);
 digitalWrite(step_outY, LOW);
 delayMicroseconds(400);
 currentY = 0;
 }
}

//The multipliers in the stepper function are the number of steps in a half inch in each of the axes
void stepperXPulse(int numPulses)
{
 //Carries out the specific number of steps on the x-stepper at a 500us delay
 for (int i = 0; i<(182*numPulses); i++){
 digitalWrite(step_outX, LOW);
 digitalWrite(step_outX, HIGH);
 digitalWrite(step_outX, LOW);
 delayMicroseconds(500);
 }

}

void stepperYPulse(int numPulses)
{
 //Carries out the specific number of steps on the y-stepper at a 500us delay
 for (int i = 0; i<(202*numPulses); i++){
 digitalWrite(step_outY, LOW);
 digitalWrite(step_outY, HIGH);
 digitalWrite(step_outY, LOW);
 delayMicroseconds(700);
 }

}

Appendix C – Arduino Deumilanove Schematic

Appendix D – EasyDriver Stepper Driver Schematic

[image:]

Appendix E – Bill of Materials
36

image4.jpeg
i ———) -

— 1

et s e

image5.jpeg

image6.png
|||||||||||||

image8.pdf

image9.png
EasyDriver v4.3

fin easy 1o use bipolar stepper motor driver
D5 7010, € i o U S rapar motors

Frcm about” 156w/ phase o sbout 750w/ phase
Deiaults 16 50 tor Uce Clogic. cuppl, Setsbie 10 330
SGppiy 8071 380 0 pover input on P1

Bor o) connact or disconmec motor

Onite S e e e

wwuw.schmalzhaus.com/EasyDriver

TPL - UREF input 1o, driver
Homitor thi= (2t pain Uith meter

520 St curent ad) por

U318 Y ange 10U 1o Uec

AT UREETET 5wk current uill be 330
A1 URLE 61 3,30 max carrent oiil b S5amn
AL URLE G110 ma current oill be Looan

BFD internediate voltage

VEC Change P13 and add i
RIZ eare an. voliaa
n piD o “best Righ

DT opTIONS. s wee Hinimun Current Gives smpothest icrasieps 48K heed pertornance.
Short 105, 106, 197 pins 2 e T Taximm Corrent dives Rgnest loraue S See datashert
0 e o o e T i Woro
SLEEP = Ucc (auake) e i e RRT i "
RS Dl M ostens oot 3] 5o
HEs 2 UEC V8 microcieps 06 vz e [P17 |3
i S Gl cehabiad
e Etﬁm L . [ST
BFO + tce cslou decay mode> L= (i o ="
. w3 caap] QUIZE 4 ize oune OUTE EL e
207 55a o . Loopr
- * R
R L o oy
an
E oo [l GO
DIR is level sensitive 102
i rising edge on STER 3 S I senser A2 vAd
Cousesa S Fa: W W
B are 0070 vee i LS e, i e oura an
o s ST e [i
L} [T . Lo I S
Coil 1 of motor across vec. " e
GOT18 nd"OUT1A Jox - e e kLo cc
Cotl' Simotor across
OUT26 and OUT2A o A39E7SLE o
Pouer topun .
[T 591 Novmally Shorted
S e M T o oo e LS e
o w4 [T
] o = v oupn
E I = - - 1= | hex SR se by Easmoriver
C3 C1 i L2 The rest you can use
T e ™ Easuriver 13 by Brian Sehmalz is
@ Jloesr T Vokes_a17sm0g S5 Tt 02 G lizehted tnder 4 bréaiive Comnons
B Aiibion 5 U5 Uicente
o 5 ana (5 g Oesianed by Brian Schmal
Be Vareator Sam’ g #¥ae aned by
o0 iz Produce by Spark Fun Eleciranics Easuriver va3
Change Lists an -
4 Raded wounting holes TITLE: EasyDriver_v43 srE

image10.png
ptem | Fart

Paye nerace Ut

Laptop Computer
UssAt0s
Wall Adaper Povwer Supply - 12VDC G00mA

Embecded inteligence

Aeduing Deumianove

Motorsand Drivers

Mercury otorStepper Motor
Motor, Step, 1210, 20 Ohm
EssyDriver Stepper Motor river
DC Barel Jack Adapter - Female
3716 oner dameter rbber tubing

Magnetic ngagement Device

Futaba S3003 Servo Motar
NaFeB Magnets o Latehing
Consers

3+ Felt Pads - tcky on one side

PVCPiping 35" damete ctto 15" heght
Gorila G

o Dimensionsl Moverent

Actal Pulley or XLSerie timing-Bet,for 1/4° & 3/8"
Belt width, 163" 0D, 22 Teeth

Taperoidal Tooth Neoprene Tiring B, 200" Pch,
Trade Sze 7700, 77 Outer e, /5" W.

teelFlat Mending Backe,Zinc Plated, " Lengthof
Sides,5/5° Width

188 StanlssSeelButon Head Socket Cop Screw, 1032
Thvead, 3" ength

15 Sanless Steel Squre Nut, 1032 Thvead e, 38"
widh, 18" Htghe

15 Stanless Steel FllyTreaded Hes ead Cap Screw.
1/4"20Thvesd, /8 Lngth

16 SanlessSeel Thin Hex Nt, 1420 Thvead Sz,
716" with, 572" Height

15 Sanless SteelGeneral Purpose Flat Wosher, /4"
ScewSize, 5/8" 0D, 04" 06" Thck

158 StanlessSteel Sl Lock Washer, /4" Screw Sae,
49700, 06" min Thick

Type 303Stailess el St crew St Co
172" Owtside Damete, 516" Width

Wi High Prcision Sailess Stel BalBaring - ABECS,
Flanged Sied, Etended onerrin, 1/4° 0,1/2° 0D
Highdensiy poetryene (HOPE) board

48" oot Aominom Shaft

Nylon Rollrs

ot etruded alaminom 1 R4S rack

ot etruded aluminom 1348 track

406" Particl bosrd, /4™ ckness

Uit Swiches

vt Coupler, W Set Srew

vt Couple, 250 Bore

Shat Coupler, 197 Bore

St Couple, Ruber Spidr

458" Smooth whiteboord sursce

A0 Pie Bosrd

A0 Pie Board

e sore,

GRAND TOTAL

|Part Number

s
A
Sparkfun L 03442

A

A1
Jameco 162027
Sparkiun 0810267
Sparkion RT.10288
Lowes

A
s
A
Lowss
Menards

w7051
Wssarisa
39834
2045263
oazBsasLL
2280540
MorsaAs
Mo2141A029
214029
sz

ws7issn
N

Low's
From 80720
From a0/20
towe's

Jameco 136288
Jameco 162270
Jameco 162000
Lowe's
Lowss
Lowe's

58042

Zinches
1

0

10pices cut
1

1packot 100

1packot 100

1packot 100

1packot 100

1packot 100

1packot 100

s

Cost for Each

[
WA
5535

3000

s1500
3595
sass
5205
019

From b Brunel
n

seebelow
s3tora
s549
485

s510

s1000

s

sa57

$97

403

3

5700
[
s10
s3for2
s
160

062
s595
s140
110
siss

s

2094

s1597

TowsiCost S&H

[
WA
5595 5509

3000

s1500
3595
$2950 $a20
s255
019

00
S50
485

s
)
s2m
ss10
s10m
s
st
s
P
s

00
[

su

s1800

saa 52305

10

i
s595
s160
110
siss $750
s
si958
si1sa
7 $54014 750028

image11.pict

Microsoft_Excel_Sheet1.xlsx
Sheet1

		Subsystem		Part		Part Number		Quantity		Cost for Each		Total Cost		S&H

		Player Interface Unit

				Laptop Computer		N/A		1		N/A		N/A

				USB A-to-B		N/A		1		N/A		N/A

				Wall Adapter Power Supply - 12VDC 600mA		Sparkfun TOL-09442		1		$5.95		$5.95		$5.09

		Embedded Intelligence

				Arduino Deumilanove		N/A		1		$30.00		$30.00

		Motors and Drivers

				Mercury Motor Stepper Motor		SM-42BYG011-25		1		$15.00		$15.00

				Motor, Step, 12VDC, 20 Ohm		Jameco 162027		1		$35.95		$35.95

				EasyDriver Stepper Motor Driver		Sparkfun ROB-10267		2		$14.95		$29.90		$4.24

				DC Barrel Jack Adapter - Female		Sparkfun PRT-10288		1		$2.95		$2.95

				3/16" inner diameter rubber tubing		Lowe's		12 inches		$0.19		$0.19

		Magnetic Engagement Device

				Futaba S3003 Servo Motor		N/A		1		From Mr. Brunell		N/A

				NdFeB Magnets for Latching		N/A		22		From Dr. Seabaugh		N/A

				Coasters:		N/A		10		see below		N/A

				3" Felt Pads - Sticky on one side		Menards		12		$3 for 4		$12.00

				PVC Piping 3.5" diameter cut to 1.5" height		Lowe's 		10 pieces cut		$5.49		$5.49

				Gorilla Glue		Menards		1		$4.85		$4.85

		Two-Dimensional Movement

				Acetal Pulley for XL-Series timing-Belt, for 1/4" & 3/8" Belt Width, 1.63" OD, 22 Teeth		M 57105K21		6		$8.07		$48.42

				Trapezoidal Tooth Neoprene Timing Belt, .200" Pitch, Trade Size 770xl, 77" Outer Circle, 3/8" W		M 6484K454		3		$14.00		$42.00

				Steel Flat Mending Bracket, Zinc-Plated, 4" Length of Sides, 5/8" Width		M 1394A34		4		$0.50		$2.00

				18-8 Stainless Steel Button Head Socket Cap Screw, 10-32 Thread, 3/8" Length		M 92949A263		1 (pack of 100)		$5.10		$5.10

				18-8 Stainless Steel Squre Nut, 10-32 Thread Size, 3/8" width, 1/8" Height		M 94785A411		1 (pack of 100)		$10.00		$10.00

				18-8 Stainless Steel Fully Threaded Hex Head Cap Screw, 1/4"-20 Thread, 3/4" Length		M 92240A540		1 (pack of 100)		$5.42		$5.42

				18-8 Stainless Steel Thin Hex Nut, 1/4"-20 Thread Size, 7/16" Width, 5/32" Height		M 91847A029		1 (pack of 100)		$4.57		$4.57

				18-8 Stainless Steel General Purpose Flat Washer, 1/4" Screw Size, 5/8" OD, .04"-.06" Thick		M 92141A029		1 (pack of 100)		$3.37		$3.37

				18-8 Stainless Steel Split Lock Washer, 1/4" Screw Size, .49" OD, .06" min Thick		M 92146A029		1 (pack of 100)		$4.03		$4.03

				Type 303 Stainless Steel Set Screw Shaft Collar, 1/4" Bore, 1/2" Outside Diameter, 5/16" Width		M 6462K12		4		$3.35		$13.40

				Mini High-Precision Stainless Steel Ball Bearing - ABEC-5, Flanged Shield, Extended Inner ring, 1/4" ID, 1/2" OD		M 57155K337		4		$7.00		$28.00

				High-density polyethylene (HDPE) board		N/A		12		N/A		N/A

				48" Smooth Aluminum Shaft				1		$13.49		$13.49

				Nylon Rollers		Lowe's		12		$8 for 2		$48.00

				T-slot extruded aluminum 1"x2"x48" track		From 80/20		2		$18.72		$37.44		$23.45

				T-slot extruded aluminum 1"x3"x48" track		From 80/20		1		$26.40		$26.40

				48"x96" Particle board, 3/4" thickness		Lowe's 		1

				Limit Switches				2		$0.62		$1.24

				Shaft Coupler, 1/4"W Set Screw		Jameco 138288		1		$5.95		$5.95

				Shaft Coupler, .250 Bore		Jameco 162270		1		$1.49		$1.49

				Shaft Coupler, .197 Bore		Jameco 161998		1		$1.19		$1.19

				Shaft Coupler, Rubber Spider		Jameco 162000		1		$1.55		$1.55		$7.50

				4'x8' Smooth whiteboard surface		Lowe's 		1		$12.98		$12.98

				1"x10"x8' Pine Board		Lowe's 		2		$24.94		$49.88

				1"x10"x6' Pine Board		Lowe's 		2		$15.97		$31.94

												$540.14		$40.28

				GRAND TOTAL		$580.42

Sheet2

Sheet3

image1.gif
87 House Rules Pong! =8

image2.jpeg

image3.jpeg
B “ﬂ

e

o e S GRT

A o e

B
R AN

s

:am House Rules
Final Documentation

Tom Enzweiler
Adam Mahood
Christina Powers
Paul Scanlon

Electrical Engincering Senior Design
University of Notre Dame
Spring 2011

